tweetcast/client/lib/gimite-web-socket-js-55ae639/flash-src/third-party/com/hurlant/math/BigInteger.as
changeset 305 436a31d11f1d
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tweetcast/client/lib/gimite-web-socket-js-55ae639/flash-src/third-party/com/hurlant/math/BigInteger.as	Thu Oct 06 11:56:48 2011 +0200
@@ -0,0 +1,1543 @@
+/**
+ * BigInteger
+ * 
+ * An ActionScript 3 implementation of BigInteger (light version)
+ * Copyright (c) 2007 Henri Torgemane
+ * 
+ * Derived from:
+ * 		The jsbn library, Copyright (c) 2003-2005 Tom Wu
+ * 
+ * See LICENSE.txt for full license information.
+ */
+package com.hurlant.math
+{
+
+	import com.hurlant.crypto.prng.Random;
+	import com.hurlant.util.Hex;
+	import com.hurlant.util.Memory;
+	
+	import flash.utils.ByteArray;
+	use namespace bi_internal;
+
+	public class BigInteger
+	{
+		public static const DB:int = 30; // number of significant bits per chunk
+		public static const DV:int = (1<<DB);
+		public static const DM:int = (DV-1); // Max value in a chunk
+		
+		public static const BI_FP:int = 52;
+		public static const FV:Number = Math.pow(2, BI_FP);
+		public static const F1:int = BI_FP - DB;
+		public static const F2:int = 2*DB - BI_FP;
+		
+		public static const ZERO:BigInteger = nbv(0);
+		public static const ONE:BigInteger  = nbv(1);
+		
+		/*bi_internal */public var t:int; // number of chunks.
+		bi_internal var s:int; // sign
+		bi_internal var a:Array; // chunks
+		
+		/**
+		 * 
+		 * @param value
+		 * @param radix  WARNING: If value is ByteArray, this holds the number of bytes to use.
+		 * @param unsigned
+		 * 
+		 */
+		public function BigInteger(value:* = null, radix:int = 0, unsigned:Boolean = false) {
+			a = new Array;
+			if (value is String) {
+				if (radix&&radix!=16) throw new Error("BigInteger construction with radix!=16 is not supported.");
+				value = Hex.toArray(value);
+				radix=0;
+			}
+			if (value is ByteArray) {
+				var array:ByteArray = value as ByteArray;
+				var length:int = radix || (array.length - array.position);
+				fromArray(array, length, unsigned);
+			}
+		}
+		public function dispose():void {
+			var r:Random = new Random;
+			for (var i:uint=0;i<a.length;i++) {
+				a[i] = r.nextByte();
+				delete a[i];
+			}
+			a=null;
+			t=0;
+			s=0;
+			Memory.gc();
+		}
+		
+		public function toString(radix:Number=16):String {
+			if (s<0) return "-"+negate().toString(radix);
+			var k:int;
+			switch (radix) {
+				case 2:   k=1; break;
+				case 4:   k=2; break;
+				case 8:   k=3; break;
+				case 16:  k=4; break;
+				case 32:  k=5; break;
+				default:
+//					return toRadix(radix);
+			}
+			var km:int = (1<<k)-1;
+			var d:int = 0;
+			var m:Boolean = false;
+			var r:String = "";
+			var i:int = t;
+			var p:int = DB-(i*DB)%k;
+			if (i-->0) {
+				if (p<DB && (d=a[i]>>p)>0) {
+					m = true;
+					r = d.toString(36);
+				}
+				while (i >= 0) {
+					if (p<k) {
+						d = (a[i]&((1<<p)-1))<<(k-p);
+						d|= a[--i]>>(p+=DB-k);
+					} else {
+						d = (a[i]>>(p-=k))&km;
+						if (p<=0) {
+							p += DB;
+							--i;
+						}
+					}
+					if (d>0) {
+						m = true;
+					}
+					if (m) {
+						r += d.toString(36);
+					}
+				}
+			}
+			return m?r:"0";
+		}
+		public function toArray(array:ByteArray):uint {
+			const k:int = 8;
+			const km:int = (1<<8)-1;
+			var d:int = 0;
+			var i:int = t;
+			var p:int = DB-(i*DB)%k;
+			var m:Boolean = false;
+			var c:int = 0;
+			if (i-->0) {
+				if (p<DB && (d=a[i]>>p)>0) {
+					m = true;
+					array.writeByte(d);
+					c++;
+				}
+				while (i >= 0) {
+					if (p<k) {
+						d = (a[i]&((1<<p)-1))<<(k-p);
+						d|= a[--i]>>(p+=DB-k);
+					} else {
+						d = (a[i]>>(p-=k))&km;
+						if (p<=0) {
+							p += DB;
+							--i;
+						}
+					}
+					if (d>0) {
+						m = true;
+					}
+					if (m) {
+						array.writeByte(d);
+						c++;
+					}
+				}
+			}
+			return c;
+		}
+		/**
+		 * best-effort attempt to fit into a Number.
+		 * precision can be lost if it just can't fit.
+		 */
+		public function valueOf():Number {
+			if (s==-1) {
+				return -negate().valueOf();
+			}
+			var coef:Number = 1;
+			var value:Number = 0;
+			for (var i:uint=0;i<t;i++) {
+				value += a[i]*coef;
+				coef *= DV;
+			}
+			return value;
+		}
+		/**
+		 * -this
+		 */
+		public function negate():BigInteger {
+			var r:BigInteger = nbi();
+			ZERO.subTo(this, r);
+			return r;
+		}
+		/**
+		 * |this|
+		 */
+		public function abs():BigInteger {
+			return (s<0)?negate():this;
+		}
+		/**
+		 * return + if this > v, - if this < v, 0 if equal
+		 */
+		public function compareTo(v:BigInteger):int {
+			var r:int = s - v.s;
+			if (r!=0) {
+				return r;
+			}
+			var i:int = t;
+			r = i-v.t;
+			if (r!=0) {
+				return r;
+			}
+			while (--i >=0) {
+				r=a[i]-v.a[i];
+				if (r != 0) return r;
+			}
+			return 0;
+		}
+		/**
+		 * returns bit length of the integer x
+		 */
+		bi_internal function nbits(x:int):int {
+			var r:int = 1;
+			var t:int;
+			if ((t=x>>>16) != 0) { x = t; r += 16; }
+			if ((t=x>>8) != 0) { x = t; r += 8; }
+			if ((t=x>>4) != 0) { x = t; r += 4; }
+			if ((t=x>>2) != 0) { x = t; r += 2; }
+			if ((t=x>>1) != 0) { x = t; r += 1; }
+			return r;
+		}
+		/**
+		 * returns the number of bits in this
+		 */
+		public function bitLength():int {
+			if (t<=0) return 0;
+			return DB*(t-1)+nbits(a[t-1]^(s&DM));
+		}
+		/**
+		 * 
+		 * @param v
+		 * @return this % v
+		 * 
+		 */
+		public function mod(v:BigInteger):BigInteger {
+			var r:BigInteger = nbi();
+			abs().divRemTo(v,null,r);
+			if (s<0 && r.compareTo(ZERO)>0) {
+				v.subTo(r,r);
+			}
+			return r;
+		}
+		/**
+		 * this^e % m, 0 <= e < 2^32
+		 */
+		public function modPowInt(e:int, m:BigInteger):BigInteger {
+			var z:IReduction;
+			if (e<256 || m.isEven()) {
+				z = new ClassicReduction(m);
+			} else {
+				z = new MontgomeryReduction(m);
+			}
+			return exp(e, z);
+		}
+
+		/**
+		 * copy this to r
+		 */
+		bi_internal function copyTo(r:BigInteger):void {
+			for (var i:int = t-1; i>=0; --i) {
+				r.a[i] = a[i];
+			}
+			r.t = t;
+			r.s = s;
+		}
+		/**
+		 * set from integer value "value", -DV <= value < DV
+		 */
+		bi_internal function fromInt(value:int):void {
+			t = 1;
+			s = (value<0)?-1:0;
+			if (value>0) {
+				a[0] = value;
+			} else if (value<-1) {
+				a[0] = value+DV;
+			} else {
+				t = 0;
+			}
+		}
+		/**
+		 * set from ByteArray and length,
+		 * starting a current position
+		 * If length goes beyond the array, pad with zeroes.
+		 */
+		bi_internal function fromArray(value:ByteArray, length:int, unsigned:Boolean = false):void {
+			var p:int = value.position;
+			var i:int = p+length;
+			var sh:int = 0;
+			const k:int = 8;
+			t = 0;
+			s = 0;
+			while (--i >= p) {
+				var x:int = i<value.length?value[i]:0;
+				if (sh == 0) {
+					a[t++] = x;
+				} else if (sh+k > DB) {
+					a[t-1] |= (x&((1<<(DB-sh))-1))<<sh;
+					a[t++] = x>>(DB-sh);
+				} else {
+					a[t-1] |= x<<sh;
+				}
+				sh += k;
+				if (sh >= DB) sh -= DB;
+			}
+			if (!unsigned && (value[0]&0x80)==0x80) {
+				s = -1;
+				if (sh > 0) {
+					a[t-1] |= ((1<<(DB-sh))-1)<<sh;
+				}
+			}
+			clamp();
+			value.position = Math.min(p+length,value.length);
+		}
+		/**
+		 * clamp off excess high words
+		 */
+		bi_internal function clamp():void {
+			var c:int = s&DM;
+			while (t>0 && a[t-1]==c) {
+				--t;
+			}
+		}
+		/**
+		 * r = this << n*DB
+		 */
+		bi_internal function dlShiftTo(n:int, r:BigInteger):void {
+			var i:int;
+			for (i=t-1; i>=0; --i) {
+				r.a[i+n] = a[i];
+			}
+			for (i=n-1; i>=0; --i) {
+				r.a[i] = 0;
+			}
+			r.t = t+n;
+			r.s = s;
+		}
+		/**
+		 * r = this >> n*DB
+		 */
+		bi_internal function drShiftTo(n:int, r:BigInteger):void {
+			var i:int;
+			for (i=n; i<t; ++i) {
+				r.a[i-n] = a[i];
+			}
+			r.t = Math.max(t-n,0);
+			r.s = s;
+		}
+		/**
+		 * r = this << n
+		 */
+		bi_internal function lShiftTo(n:int, r:BigInteger):void {
+			var bs:int = n%DB;
+			var cbs:int = DB-bs;
+			var bm:int = (1<<cbs)-1;
+			var ds:int = n/DB;
+			var c:int = (s<<bs)&DM;
+			var i:int;
+			for (i=t-1; i>=0; --i) {
+				r.a[i+ds+1] = (a[i]>>cbs)|c;
+				c = (a[i]&bm)<<bs;
+			}
+			for (i=ds-1; i>=0; --i) {
+				r.a[i] = 0;
+			}
+			r.a[ds] = c;
+			r.t = t+ds+1;
+			r.s = s;
+			r.clamp();
+		}
+		/**
+		 * r = this >> n
+		 */
+		bi_internal function rShiftTo(n:int, r:BigInteger):void {
+			r.s = s;
+			var ds:int = n/DB;
+			if (ds >= t) {
+				r.t = 0;
+				return;
+			}
+			var bs:int = n%DB;
+			var cbs:int = DB-bs;
+			var bm:int = (1<<bs)-1;
+			r.a[0] = a[ds]>>bs;
+			var i:int;
+			for (i=ds+1; i<t; ++i) {
+				r.a[i-ds-1] |= (a[i]&bm)<<cbs;
+				r.a[i-ds] = a[i]>>bs;
+			}
+			if (bs>0) {
+				r.a[t-ds-1] |= (s&bm)<<cbs;
+			}
+			r.t = t-ds;
+			r.clamp();
+		}
+		/**
+		 * r = this - v
+		 */
+		bi_internal function subTo(v:BigInteger, r:BigInteger):void {
+			var i:int = 0;
+			var c:int = 0;
+			var m:int = Math.min(v.t, t);
+			while (i<m) {
+				c += a[i] - v.a[i];
+				r.a[i++] = c & DM;
+				c >>= DB;
+			}
+			if (v.t < t) {
+				c -= v.s;
+				while (i< t) {
+					c+= a[i];
+					r.a[i++] = c&DM;
+					c >>= DB;
+				}
+				c += s;
+			} else {
+				c += s;
+				while (i < v.t) {
+					c -= v.a[i];
+					r.a[i++] = c&DM;
+					c >>= DB;
+				}
+				c -= v.s;
+			}
+			r.s = (c<0)?-1:0;
+			if (c<-1) {
+				r.a[i++] = DV+c;
+			} else if (c>0) {
+				r.a[i++] = c;
+			}
+			r.t = i;
+			r.clamp();
+		}
+		/**
+		 * am: Compute w_j += (x*this_i), propagates carries,
+		 * c is initial carry, returns final carry.
+		 * c < 3*dvalue, x < 2*dvalue, this_i < dvalue
+		 */
+		bi_internal function am(i:int,x:int,w:BigInteger,j:int,c:int,n:int):int {
+			var xl:int = x&0x7fff;
+			var xh:int = x>>15;
+			while(--n >= 0) {
+				var l:int = a[i]&0x7fff;
+				var h:int = a[i++]>>15;
+				var m:int = xh*l + h*xl;
+				l = xl*l + ((m&0x7fff)<<15)+w.a[j]+(c&0x3fffffff);
+				c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
+				w.a[j++] = l&0x3fffffff;
+			}
+			return c;
+		}
+		/**
+		 * r = this * v, r != this,a (HAC 14.12)
+		 * "this" should be the larger one if appropriate
+		 */
+		bi_internal function multiplyTo(v:BigInteger, r:BigInteger):void {
+			var x:BigInteger = abs();
+			var y:BigInteger = v.abs();
+			var i:int = x.t;
+			r.t = i+y.t;
+			while (--i >= 0) {
+				r.a[i] = 0;
+			}
+			for (i=0; i<y.t; ++i) {
+				r.a[i+x.t] = x.am(0, y.a[i], r, i, 0, x.t);
+			}
+			r.s = 0;
+			r.clamp();
+			if (s!=v.s) {
+				ZERO.subTo(r, r);
+			}
+		}
+		/**
+		 * r = this^2, r != this (HAC 14.16)
+		 */
+		bi_internal function squareTo(r:BigInteger):void {
+			var x:BigInteger = abs();
+			var i:int = r.t = 2*x.t;
+			while (--i>=0) r.a[i] = 0;
+			for (i=0; i<x.t-1; ++i) {
+				var c:int = x.am(i, x.a[i], r, 2*i, 0, 1);
+				if ((r.a[i+x.t] += x.am(i+1, 2*x.a[i], r, 2*i+1, c, x.t-i-1)) >= DV) {
+					r.a[i+x.t] -= DV;
+					r.a[i+x.t+1] = 1;
+				}
+			}
+			if (r.t>0) {
+				r.a[r.t-1] += x.am(i, x.a[i], r, 2*i, 0, 1);
+			}
+			r.s = 0;
+			r.clamp();
+		}
+		/**
+		 * divide this by m, quotient and remainder to q, r (HAC 14.20)
+		 * r != q, this != m. q or r may be null.
+		 */
+		bi_internal function divRemTo(m:BigInteger, q:BigInteger = null, r:BigInteger = null):void {
+			var pm:BigInteger = m.abs();
+			if (pm.t <= 0) return;
+			var pt:BigInteger = abs();
+			if (pt.t < pm.t) {
+				if (q!=null) q.fromInt(0);
+				if (r!=null) copyTo(r);
+				return;
+			}
+			if (r==null) r = nbi();
+			var y:BigInteger = nbi();
+			var ts:int = s;
+			var ms:int = m.s;
+			var nsh:int = DB-nbits(pm.a[pm.t-1]); // normalize modulus
+			if (nsh>0) {
+				pm.lShiftTo(nsh, y);
+				pt.lShiftTo(nsh, r);
+			} else {
+				pm.copyTo(y);
+				pt.copyTo(r);
+			}
+			var ys:int = y.t;
+			var y0:int = y.a[ys-1];
+			if (y0==0) return;
+			var yt:Number = y0*(1<<F1)+((ys>1)?y.a[ys-2]>>F2:0);
+			var d1:Number = FV/yt;
+			var d2:Number = (1<<F1)/yt;
+			var e:Number = 1<<F2;
+			var i:int = r.t;
+			var j:int = i-ys;
+			var t:BigInteger = (q==null)?nbi():q;
+			y.dlShiftTo(j,t);
+			if (r.compareTo(t)>=0) {
+				r.a[r.t++] = 1;
+				r.subTo(t,r);
+			}
+			ONE.dlShiftTo(ys,t);
+			t.subTo(y,y); // "negative" y so we can replace sub with am later.
+			while(y.t<ys) y.(y.t++, 0);
+			while(--j >= 0) {
+				// Estimate quotient digit
+				var qd:int = (r.a[--i]==y0)?DM:Number(r.a[i])*d1+(Number(r.a[i-1])+e)*d2;
+				if ((r.a[i]+= y.am(0, qd, r, j, 0, ys))<qd) { // Try it out
+					y.dlShiftTo(j, t);
+					r.subTo(t,r);
+					while (r.a[i]<--qd) {
+						r.subTo(t,r);
+					}
+				}
+			}
+			if (q!=null) {
+				r.drShiftTo(ys,q);
+				if (ts!=ms) {
+					ZERO.subTo(q,q);
+				}
+			}
+			r.t = ys;
+			r.clamp();
+			if (nsh>0) {
+				r.rShiftTo(nsh, r); // Denormalize remainder
+			}
+			if (ts<0) {
+				ZERO.subTo(r,r);
+			}
+		}
+		/**
+		 * return "-1/this % 2^DB"; useful for Mont. reduction
+		 * justification:
+		 *         xy == 1 (mod n)
+		 *         xy =  1+km
+		 * 	 xy(2-xy) = (1+km)(1-km)
+		 * x[y(2-xy)] =  1-k^2.m^2
+		 * x[y(2-xy)] == 1 (mod m^2)
+		 * if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
+		 * should reduce x and y(2-xy) by m^2 at each step to keep size bounded
+		 * [XXX unit test the living shit out of this.]
+		 */
+		bi_internal function invDigit():int {
+			if (t<1) return 0;
+			var x:int = a[0];
+			if ((x&1)==0) return 0;
+			var y:int = x&3; 							// y == 1/x mod 2^2
+			y = (y*(2-(x&0xf )*y))             &0xf;	// y == 1/x mod 2^4
+			y = (y*(2-(x&0xff)*y))             &0xff;	// y == 1/x mod 2^8
+			y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff;	// y == 1/x mod 2^16
+			// last step - calculate inverse mod DV directly;
+			// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
+			// XXX 48 bit ints? Whaaaa? is there an implicit float conversion in here?
+			y = (y*(2-x*y%DV))%DV;	// y == 1/x mod 2^dbits
+			// we really want the negative inverse, and -DV < y < DV
+			return (y>0)?DV-y:-y;
+		}
+		/**
+		 * true iff this is even
+		 */
+		bi_internal function isEven():Boolean {
+			return ((t>0)?(a[0]&1):s) == 0;
+		}
+		/**
+		 * this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
+		 */
+		bi_internal function exp(e:int, z:IReduction):BigInteger {
+			if (e > 0xffffffff || e < 1) return ONE;
+			var r:BigInteger = nbi();
+			var r2:BigInteger = nbi();
+			var g:BigInteger = z.convert(this);
+			var i:int = nbits(e)-1;
+			g.copyTo(r);
+			while(--i>=0) {
+				z.sqrTo(r, r2);
+				if ((e&(1<<i))>0) {
+					z.mulTo(r2,g,r);
+				} else {
+					var t:BigInteger = r;
+					r = r2;
+					r2 = t;
+				}
+				
+			}
+			return z.revert(r);
+		}
+		bi_internal function intAt(str:String, index:int):int {
+			return parseInt(str.charAt(index), 36);
+		}
+
+
+		protected function nbi():* {
+			return new BigInteger;
+		}
+		/**
+		 * return bigint initialized to value
+		 */
+		public static function nbv(value:int):BigInteger {
+			var bn:BigInteger = new BigInteger;
+			bn.fromInt(value);
+			return bn;
+		}
+
+
+		// Functions above are sufficient for RSA encryption.
+		// The stuff below is useful for decryption and key generation
+
+		public static const lowprimes:Array = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509];
+		public static const lplim:int = (1<<26)/lowprimes[lowprimes.length-1];
+
+
+		public function clone():BigInteger {
+			var r:BigInteger = new BigInteger;
+			this.copyTo(r);
+			return r;
+		}
+		
+		/**
+		 * 
+		 * @return value as integer
+		 * 
+		 */
+		public function intValue():int {
+			if (s<0) {
+				if (t==1) {
+					return a[0]-DV;
+				} else if (t==0) {
+					return -1;
+				}
+			} else if (t==1) {
+				return a[0];
+			} else if (t==0) {
+				return 0;
+			}
+			// assumes 16 < DB < 32
+			return  ((a[1]&((1<<(32-DB))-1))<<DB)|a[0];
+		}
+		
+		/**
+		 * 
+		 * @return value as byte
+		 * 
+		 */
+		public function byteValue():int {
+			return (t==0)?s:(a[0]<<24)>>24;
+		}
+		
+		/**
+		 * 
+		 * @return value as short (assumes DB>=16)
+		 * 
+		 */
+		public function shortValue():int {
+			return (t==0)?s:(a[0]<<16)>>16;
+		}
+		
+		/**
+		 * 
+		 * @param r
+		 * @return x s.t. r^x < DV
+		 * 
+		 */
+		protected function chunkSize(r:Number):int {
+			return Math.floor(Math.LN2*DB/Math.log(r));
+		}
+		
+		/**
+		 * 
+		 * @return 0 if this ==0, 1 if this >0
+		 * 
+		 */
+		public function sigNum():int {
+			if (s<0) {
+				return -1;
+			} else if (t<=0 || (t==1 && a[0]<=0)) {
+				return 0;
+			} else{
+				return 1;
+			}
+		}
+		
+		/**
+		 * 
+		 * @param b: radix to use
+		 * @return a string representing the integer converted to the radix.
+		 * 
+		 */
+		protected function toRadix(b:uint=10):String {
+			if (sigNum()==0 || b<2 || b>32) return "0";
+			var cs:int = chunkSize(b);
+			var a:Number = Math.pow(b, cs);
+			var d:BigInteger = nbv(a);
+			var y:BigInteger = nbi();
+			var z:BigInteger = nbi();
+			var r:String = "";
+			divRemTo(d, y, z);
+			while (y.sigNum()>0) {
+				r = (a+z.intValue()).toString(b).substr(1) + r;
+				y.divRemTo(d,y,z);
+			}
+			return z.intValue().toString(b) + r;
+		}
+		
+		/**
+		 * 
+		 * @param s a string to convert from using radix.
+		 * @param b a radix
+		 * 
+		 */
+		protected function fromRadix(s:String, b:int = 10):void {
+			fromInt(0);
+			var cs:int = chunkSize(b);
+			var d:Number = Math.pow(b, cs);
+			var mi:Boolean = false;
+			var j:int = 0;
+			var w:int = 0;
+			for (var i:int=0;i<s.length;++i) {
+				var x:int = intAt(s, i);
+				if (x<0) {
+					if (s.charAt(i) == "-" && sigNum() == 0) {
+						mi = true;
+					}
+					continue;
+				}
+				w = b*w+x;
+				if (++j >= cs) {
+					dMultiply(d);
+					dAddOffset(w,0);
+					j=0;
+					w=0;
+				}
+			}
+			if (j>0) {
+				dMultiply(Math.pow(b,j));
+				dAddOffset(w,0);
+			}
+			if (mi) {
+				BigInteger.ZERO.subTo(this, this);
+			}
+		}
+		
+		// XXX function fromNumber not written yet.
+		
+		/**
+		 * 
+		 * @return a byte array.
+		 * 
+		 */
+		public function toByteArray():ByteArray {
+			var i:int = t;
+			var r:ByteArray = new ByteArray;
+			r[0] = s;
+			var p:int = DB-(i*DB)%8;
+			var d:int;
+			var k:int=0;
+			if (i-->0) {
+				if (p<DB && (d=a[i]>>p)!=(s&DM)>>p) {
+					r[k++] = d|(s<<(DB-p));
+				}
+				while (i>=0) {
+					if(p<8) {
+						d = (a[i]&((1<<p)-1))<<(8-p);
+						d|= a[--i]>>(p+=DB-8);
+					} else {
+						d = (a[i]>>(p-=8))&0xff;
+						if (p<=0) {
+							p += DB;
+							--i;
+						}
+					}
+					if ((d&0x80)!=0) d|=-256;
+					if (k==0 && (s&0x80)!=(d&0x80)) ++k;
+					if (k>0 || d!=s) r[k++] = d;
+				} 
+			}
+			return r;
+		}
+
+		public function equals(a:BigInteger):Boolean {
+			return compareTo(a)==0;
+		}
+		public function min(a:BigInteger):BigInteger {
+			return (compareTo(a)<0)?this:a;
+		}
+		public function max(a:BigInteger):BigInteger {
+			return (compareTo(a)>0)?this:a;
+		}
+		
+		/**
+		 * 
+		 * @param a	a BigInteger to perform the operation with
+		 * @param op a Function implementing the operation
+		 * @param r a BigInteger to store the result of the operation
+		 * 
+		 */
+		protected function bitwiseTo(a:BigInteger, op:Function, r:BigInteger):void {
+			var i:int;
+			var f:int;
+			var m:int = Math.min(a.t, t);
+			for (i=0; i<m; ++i) {
+				r.a[i] = op(this.a[i],a.a[i]);
+			}
+			if (a.t<t) {
+				f = a.s&DM;
+				for (i=m;i<t;++i) {
+					r.a[i] = op(this.a[i],f);
+				}
+				r.t = t;
+			} else {
+				f = s&DM;
+				for (i=m;i<a.t;++i) {
+					r.a[i] = op(f,a.a[i]);
+				}
+				r.t = a.t;
+			}
+			r.s = op(s, a.s);
+			r.clamp();
+		}
+		
+		private function op_and(x:int, y:int):int {return x&y;}
+		public function and(a:BigInteger):BigInteger {
+			var r:BigInteger = new BigInteger;
+			bitwiseTo(a, op_and, r);
+			return r;
+		}
+		
+		private function op_or(x:int, y:int):int {return x|y;}
+		public function or(a:BigInteger):BigInteger {
+			var r:BigInteger = new BigInteger;
+			bitwiseTo(a, op_or, r);
+			return r;
+		}
+		
+		private function op_xor(x:int, y:int):int {return x^y;}
+		public function xor(a:BigInteger):BigInteger {
+			var r:BigInteger = new BigInteger;
+			bitwiseTo(a, op_xor, r);
+			return r;
+		}
+		
+		private function op_andnot(x:int, y:int):int { return x&~y;}
+		public function andNot(a:BigInteger):BigInteger {
+			var r:BigInteger = new BigInteger;
+			bitwiseTo(a, op_andnot, r);
+			return r;
+		}
+		
+		public function not():BigInteger {
+			var r:BigInteger = new BigInteger;
+			for (var i:int=0;i<t;++i) {
+				r[i] = DM&~a[i];
+			}
+			r.t = t;
+			r.s = ~s;
+			return r;
+		}
+		
+		public function shiftLeft(n:int):BigInteger {
+			var r:BigInteger = new BigInteger;
+			if (n<0) {
+				rShiftTo(-n, r);
+			} else {
+				lShiftTo(n, r);
+			}
+			return r;
+		}
+		public function shiftRight(n:int):BigInteger {
+			var r:BigInteger = new BigInteger;
+			if (n<0) {
+				lShiftTo(-n, r);
+			} else {
+				rShiftTo(n, r);
+			}
+			return r;
+		}
+		
+		/**
+		 * 
+		 * @param x
+		 * @return index of lowet 1-bit in x, x < 2^31
+		 * 
+		 */
+		private function lbit(x:int):int {
+			if (x==0) return -1;
+			var r:int = 0;
+			if ((x&0xffff)==0) { x>>= 16; r += 16; }
+			if ((x&0xff) == 0) { x>>=  8; r +=  8; }
+			if ((x&0xf)  == 0) { x>>=  4; r +=  4; }
+			if ((x&0x3)  == 0) { x>>=  2; r +=  2; }
+			if ((x&0x1)  == 0) ++r;
+			return r;
+		}
+		
+		/**
+		 * 
+		 * @return index of lowest 1-bit (or -1 if none)
+		 * 
+		 */
+		public function getLowestSetBit():int {
+			for (var i:int=0;i<t;++i) {
+				if (a[i]!=0) return i*DB+lbit(a[i]);
+			}
+			if (s<0) return t*DB;
+			return -1;
+		}
+		
+		/**
+		 * 
+		 * @param x
+		 * @return number of 1 bits in x
+		 * 
+		 */
+		private function cbit(x:int):int {
+			var r:uint =0;
+			while (x!=0) { x &= x-1; ++r }
+			return r;
+		}
+		
+		/**
+		 * 
+		 * @return number of set bits
+		 * 
+		 */
+		public function bitCount():int {
+			var r:int=0;
+			var x:int = s&DM;
+			for (var i:int=0;i<t;++i) {
+				r += cbit(a[i]^x);
+			}
+			return r;
+		}
+		
+		/**
+		 * 
+		 * @param n
+		 * @return true iff nth bit is set
+		 * 
+		 */
+		public function testBit(n:int):Boolean {
+			var j:int = Math.floor(n/DB);
+			if (j>=t) {
+				return s!=0;
+			}
+			return ((a[j]&(1<<(n%DB)))!=0);
+		}
+		
+		/**
+		 * 
+		 * @param n
+		 * @param op
+		 * @return this op (1<<n)
+		 * 
+		 */
+		protected function changeBit(n:int,op:Function):BigInteger {
+			var r:BigInteger = BigInteger.ONE.shiftLeft(n);
+			bitwiseTo(r, op, r);
+			return r;
+		}
+		
+		/**
+		 * 
+		 * @param n
+		 * @return this | (1<<n)
+		 * 
+		 */
+		public function setBit(n:int):BigInteger { return changeBit(n, op_or); }
+
+		/**
+		 * 
+		 * @param n
+		 * @return this & ~(1<<n)
+		 * 
+		 */
+		public function clearBit(n:int):BigInteger { return changeBit(n, op_andnot); }
+
+		/**
+		 * 
+		 * @param n
+		 * @return this ^ (1<<n)
+		 * 
+		 */
+		public function flipBit(n:int):BigInteger { return changeBit(n, op_xor); }
+
+		/**
+		 * 
+		 * @param a
+		 * @param r = this + a
+		 * 
+		 */
+		protected function addTo(a:BigInteger, r:BigInteger):void {
+			var i:int = 0;
+			var c:int = 0;
+			var m:int = Math.min(a.t, t);
+			while (i<m) {
+				c += this.a[i] + a.a[i];
+				r.a[i++] = c&DM;
+				c>>=DB;
+			}
+			if (a.t < t) {
+				c += a.s;
+				while (i<t) {
+					c += this.a[i];
+					r.a[i++] = c&DM;
+					c >>= DB;
+				}
+				c += s;
+			} else {
+				c += s;
+				while (i<a.t) {
+					c += a.a[i];
+					r.a[i++] = c&DM;
+					c >>= DB;
+				}
+				c += a.s;
+			}
+			r.s = (c<0)?-1:0;
+			if (c>0) {
+				r.a[i++] = c;
+			} else if (c<-1) {
+				r.a[i++] = DV+c;
+			}
+			r.t = i;
+			r.clamp();
+		}
+		
+		/**
+		 * 
+		 * @param a
+		 * @return this + a
+		 * 
+		 */
+		public function add(a:BigInteger):BigInteger {
+			var r:BigInteger = new BigInteger;
+			addTo(a,r);
+			return r;
+		}
+
+		/**
+		 * 
+		 * @param a
+		 * @return this - a
+		 * 
+		 */
+		public function subtract(a:BigInteger):BigInteger {
+			var r:BigInteger = new BigInteger;
+			subTo(a,r);
+			return r;
+		}
+		
+		/**
+		 * 
+		 * @param a
+		 * @return this * a
+		 * 
+		 */
+		public function multiply(a:BigInteger):BigInteger {
+			var r:BigInteger = new BigInteger;
+			multiplyTo(a,r);
+			return r;
+		}
+		
+		/**
+		 * 
+		 * @param a
+		 * @return this / a
+		 * 
+		 */
+		public function divide(a:BigInteger):BigInteger {
+			var r:BigInteger = new BigInteger;
+			divRemTo(a, r, null);
+			return r;
+		}
+		
+		public function remainder(a:BigInteger):BigInteger {
+			var r:BigInteger = new BigInteger;
+			divRemTo(a, null, r);
+			return r;
+		}
+		
+		/**
+		 * 
+		 * @param a
+		 * @return [this/a, this%a]
+		 * 
+		 */
+		public function divideAndRemainder(a:BigInteger):Array {
+			var q:BigInteger = new BigInteger;
+			var r:BigInteger = new BigInteger;
+			divRemTo(a, q, r);
+			return [q,r];
+		}
+		
+		/**
+		 * 
+		 * this *= n, this >=0, 1 < n < DV
+		 * 
+		 * @param n
+		 * 
+		 */
+		bi_internal function dMultiply(n:int):void {
+			a[t] = am(0, n-1, this, 0, 0, t);
+			++t;
+			clamp();
+		}
+		
+		/**
+		 * 
+		 * this += n << w words, this >= 0
+		 * 
+		 * @param n
+		 * @param w
+		 * 
+		 */
+		bi_internal function dAddOffset(n:int, w:int):void {
+			while (t<=w) {
+				a[t++] = 0;
+			}
+			a[w] += n;
+			while (a[w] >= DV) {
+				a[w] -= DV;
+				if (++w >= t) {
+					a[t++] = 0;
+				}
+				++a[w];
+			}
+		}
+
+		/**
+		 * 
+		 * @param e
+		 * @return this^e
+		 * 
+		 */
+		public function pow(e:int):BigInteger {
+			return exp(e, new NullReduction);
+		}
+		
+		/**
+		 * 
+		 * @param a
+		 * @param n
+		 * @param r = lower n words of "this * a", a.t <= n
+		 * 
+		 */
+		bi_internal function multiplyLowerTo(a:BigInteger, n:int, r:BigInteger):void {
+			var i:int = Math.min(t+a.t, n);
+			r.s = 0; // assumes a, this >= 0
+			r.t = i;
+			while (i>0) {
+				r.a[--i]=0;
+			}
+			var j:int;
+			for (j=r.t-t;i<j;++i) {
+				r.a[i+t] = am(0, a.a[i], r, i, 0, t);
+			}
+			for (j=Math.min(a.t,n);i<j;++i) {
+				am(0, a.a[i], r, i, 0, n-i);
+			}
+			r.clamp();
+		}
+		
+		/**
+		 * 
+		 * @param a
+		 * @param n
+		 * @param r = "this * a" without lower n words, n > 0
+		 * 
+		 */
+		bi_internal function multiplyUpperTo(a:BigInteger, n:int, r:BigInteger):void {
+			--n;
+			var i:int = r.t = t+a.t-n;
+			r.s = 0; // assumes a,this >= 0
+			while (--i>=0) {
+				r.a[i] = 0;
+			}
+			for (i=Math.max(n-t,0);i<a.t;++i) {
+				r.a[t+i-n] = am(n-i, a.a[i], r, 0, 0, t+i-n);
+			}
+			r.clamp();
+			r.drShiftTo(1,r);
+		}
+		
+		/**
+		 * 
+		 * @param e
+		 * @param m
+		 * @return this^e % m (HAC 14.85)
+		 * 
+		 */
+		public function modPow(e:BigInteger, m:BigInteger):BigInteger {
+			var i:int = e.bitLength();
+			var k:int;
+			var r:BigInteger = nbv(1);
+			var z:IReduction;
+			
+			if (i<=0) {
+				return r;
+			} else if (i<18) {
+				k=1;
+			} else if (i<48) {
+				k=3;
+			} else if (i<144) {
+				k=4;
+			} else if (i<768) {
+				k=5;
+			} else {
+				k=6;
+			}
+			if (i<8) {
+				z = new ClassicReduction(m);
+			} else if (m.isEven()) {
+				z = new BarrettReduction(m);
+			} else {
+				z = new MontgomeryReduction(m);
+			}
+			// precomputation
+			var g:Array = [];
+			var n:int = 3;
+			var k1:int = k-1;
+			var km:int = (1<<k)-1;
+			g[1] = z.convert(this);
+			if (k > 1) {
+				var g2:BigInteger = new BigInteger;
+				z.sqrTo(g[1], g2);
+				while (n<=km) {
+					g[n] = new BigInteger;
+					z.mulTo(g2, g[n-2], g[n]);
+					n += 2;
+				}
+			}
+			
+			var j:int = e.t-1;
+			var w:int;
+			var is1:Boolean = true;
+			var r2:BigInteger = new BigInteger;
+			var t:BigInteger;
+			i = nbits(e.a[j])-1;
+			while (j>=0) {
+				if (i>=k1) {
+					w = (e.a[j]>>(i-k1))&km;
+				} else {
+					w = (e.a[j]&((1<<(i+1))-1))<<(k1-i);
+					if (j>0) {
+						w |= e.a[j-1]>>(DB+i-k1);
+					}
+				}
+				n = k;
+				while ((w&1)==0) {
+					w >>= 1;
+					--n;
+				}
+				if ((i -= n) <0) {
+					i += DB;
+					--j;
+				}
+				if (is1) { // ret == 1, don't bother squaring or multiplying it
+					g[w].copyTo(r);
+					is1 = false;
+				} else {
+					while (n>1) {
+						z.sqrTo(r, r2);
+						z.sqrTo(r2, r);
+						n -= 2;
+					}
+					if (n>0) {
+						z.sqrTo(r, r2);
+					} else {
+						t = r;
+						r = r2;
+						r2 = t;
+					}
+					z.mulTo(r2, g[w], r);
+				}
+				while (j>=0 && (e.a[j]&(1<<i)) == 0) {
+					z.sqrTo(r, r2);
+					t = r;
+					r = r2;
+					r2 = t;
+					if (--i<0) {
+						i = DB-1;
+						--j;
+					}
+					
+				}
+			}
+			return z.revert(r);
+		}
+		
+		/**
+		 * 
+		 * @param a
+		 * @return gcd(this, a) (HAC 14.54)
+		 * 
+		 */
+		public function gcd(a:BigInteger):BigInteger {
+			var x:BigInteger = (s<0)?negate():clone();
+			var y:BigInteger = (a.s<0)?a.negate():a.clone();
+			if (x.compareTo(y)<0) {
+				var t:BigInteger=x;
+				x=y;
+				y=t;
+			}
+			var i:int = x.getLowestSetBit();
+			var g:int = y.getLowestSetBit();
+			if (g<0) return x;
+			if (i<g) g= i;
+			if (g>0) {
+				x.rShiftTo(g, x);
+				y.rShiftTo(g, y);
+			}
+			while (x.sigNum()>0) {
+				if ((i = x.getLowestSetBit()) >0) {
+					x.rShiftTo(i, x);
+				}
+				if ((i = y.getLowestSetBit()) >0) {
+					y.rShiftTo(i, y);
+				}
+				if (x.compareTo(y) >= 0) {
+					x.subTo(y, x);
+					x.rShiftTo(1, x);
+				} else {
+					y.subTo(x, y);
+					y.rShiftTo(1, y);
+				}
+			}
+			if (g>0) {
+				y.lShiftTo(g, y);
+			}
+			return y;
+		}
+
+		/**
+		 * 
+		 * @param n
+		 * @return this % n, n < 2^DB
+		 * 
+		 */
+		protected function modInt(n:int):int {
+			if (n<=0) return 0;
+			var d:int = DV%n;
+			var r:int = (s<0)?n-1:0;
+			if (t>0) {
+				if (d==0) {
+					r = a[0]%n;
+				} else {
+					for (var i:int=t-1;i>=0;--i) {
+						r = (d*r+a[i])%n;
+					}
+				}
+			}
+			return r;
+		}
+		
+		/**
+		 * 
+		 * @param m
+		 * @return 1/this %m (HAC 14.61)
+		 * 
+		 */
+		public function modInverse(m:BigInteger):BigInteger {
+			var ac:Boolean = m.isEven();
+			if ((isEven()&&ac) || m.sigNum()==0) {
+				return BigInteger.ZERO;
+			}
+			var u:BigInteger = m.clone();
+			var v:BigInteger = clone();
+			var a:BigInteger = nbv(1);
+			var b:BigInteger = nbv(0);
+			var c:BigInteger = nbv(0);
+			var d:BigInteger = nbv(1);
+			while (u.sigNum()!=0) {
+				while (u.isEven()) {
+					u.rShiftTo(1,u);
+					if (ac) {
+						if (!a.isEven() || !b.isEven()) {
+							a.addTo(this,a);
+							b.subTo(m,b);
+						}
+						a.rShiftTo(1,a);
+					} else if (!b.isEven()) {
+						b.subTo(m,b);
+					}
+					b.rShiftTo(1,b);
+				}
+				while (v.isEven()) {
+					v.rShiftTo(1,v);
+					if (ac) {
+						if (!c.isEven() || !d.isEven()) {
+							c.addTo(this,c);
+							d.subTo(m,d);
+						}
+						c.rShiftTo(1,c);
+					} else if (!d.isEven()) {
+						d.subTo(m,d);
+					}
+					d.rShiftTo(1,d);
+				}
+				if (u.compareTo(v)>=0) {
+					u.subTo(v,u);
+					if (ac) {
+						a.subTo(c,a);
+					}
+					b.subTo(d,b);
+				} else {
+					v.subTo(u,v);
+					if (ac) {
+						c.subTo(a,c);
+					}
+					d.subTo(b,d);
+				}
+			}
+			if (v.compareTo(BigInteger.ONE) != 0) {
+				return BigInteger.ZERO;
+			}
+			if (d.compareTo(m) >= 0) {
+				return d.subtract(m);
+			}
+			if (d.sigNum()<0) {
+				d.addTo(m,d);
+			} else {
+				return d;
+			}
+			if (d.sigNum()<0) {
+				return d.add(m);
+			} else {
+				return d;
+			}
+		}
+
+		/**
+		 * 
+		 * @param t
+		 * @return primality with certainty >= 1-.5^t
+		 * 
+		 */
+		public function isProbablePrime(t:int):Boolean {
+			var i:int;
+			var x:BigInteger = abs();
+			if (x.t == 1 && x.a[0]<=lowprimes[lowprimes.length-1]) {
+				for (i=0;i<lowprimes.length;++i) {
+					if (x[0]==lowprimes[i]) return true;
+				}
+				return false;
+			}
+			if (x.isEven()) return false;
+			i = 1;
+			while (i<lowprimes.length) {
+				var m:int = lowprimes[i];
+				var j:int = i+1;
+				while (j<lowprimes.length && m<lplim) {
+					m *= lowprimes[j++];
+				}
+				m = x.modInt(m);
+				while (i<j) {
+					if (m%lowprimes[i++]==0) {
+						return false;
+					}
+				}
+			}
+			return x.millerRabin(t);
+		}
+		
+		/**
+		 * 
+		 * @param t
+		 * @return true if probably prime (HAC 4.24, Miller-Rabin)
+		 * 
+		 */
+		protected function millerRabin(t:int):Boolean {
+			var n1:BigInteger = subtract(BigInteger.ONE);
+			var k:int = n1.getLowestSetBit();
+			if (k<=0) {
+				return false;
+			}
+			var r:BigInteger = n1.shiftRight(k);
+			t = (t+1)>>1;
+			if (t>lowprimes.length) {
+				t = lowprimes.length;
+			}
+			var a:BigInteger = new BigInteger;
+			for (var i:int=0;i<t;++i) {
+				a.fromInt(lowprimes[i]);
+				var y:BigInteger = a.modPow(r, this);
+				if (y.compareTo(BigInteger.ONE)!=0 && y.compareTo(n1)!=0) {
+					var j:int = 1;
+					while (j++<k && y.compareTo(n1)!=0) {
+						y = y.modPowInt(2, this);
+						if (y.compareTo(BigInteger.ONE)==0) {
+							return false;
+						}
+					}
+					if (y.compareTo(n1)!=0) {
+						return false;
+					}
+				}
+			}
+			return true;
+		}
+
+		/**
+		 * Tweak our BigInteger until it looks prime enough
+		 * 
+		 * @param bits
+		 * @param t
+		 * 
+		 */
+		public function primify(bits:int, t:int):void {
+			if (!testBit(bits-1)) {	// force MSB set
+				bitwiseTo(BigInteger.ONE.shiftLeft(bits-1), op_or, this);
+			}
+			if (isEven()) {
+				dAddOffset(1,0);	// force odd
+			}
+			while (!isProbablePrime(t)) {
+				dAddOffset(2,0);
+				while(bitLength()>bits) subTo(BigInteger.ONE.shiftLeft(bits-1),this);
+			}
+		}
+
+	}
+}