1 /** |
|
2 * BigInteger |
|
3 * |
|
4 * An ActionScript 3 implementation of BigInteger (light version) |
|
5 * Copyright (c) 2007 Henri Torgemane |
|
6 * |
|
7 * Derived from: |
|
8 * The jsbn library, Copyright (c) 2003-2005 Tom Wu |
|
9 * |
|
10 * See LICENSE.txt for full license information. |
|
11 */ |
|
12 package com.hurlant.math |
|
13 { |
|
14 |
|
15 import com.hurlant.crypto.prng.Random; |
|
16 import com.hurlant.util.Hex; |
|
17 import com.hurlant.util.Memory; |
|
18 |
|
19 import flash.utils.ByteArray; |
|
20 use namespace bi_internal; |
|
21 |
|
22 public class BigInteger |
|
23 { |
|
24 public static const DB:int = 30; // number of significant bits per chunk |
|
25 public static const DV:int = (1<<DB); |
|
26 public static const DM:int = (DV-1); // Max value in a chunk |
|
27 |
|
28 public static const BI_FP:int = 52; |
|
29 public static const FV:Number = Math.pow(2, BI_FP); |
|
30 public static const F1:int = BI_FP - DB; |
|
31 public static const F2:int = 2*DB - BI_FP; |
|
32 |
|
33 public static const ZERO:BigInteger = nbv(0); |
|
34 public static const ONE:BigInteger = nbv(1); |
|
35 |
|
36 /*bi_internal */public var t:int; // number of chunks. |
|
37 bi_internal var s:int; // sign |
|
38 bi_internal var a:Array; // chunks |
|
39 |
|
40 /** |
|
41 * |
|
42 * @param value |
|
43 * @param radix WARNING: If value is ByteArray, this holds the number of bytes to use. |
|
44 * @param unsigned |
|
45 * |
|
46 */ |
|
47 public function BigInteger(value:* = null, radix:int = 0, unsigned:Boolean = false) { |
|
48 a = new Array; |
|
49 if (value is String) { |
|
50 if (radix&&radix!=16) throw new Error("BigInteger construction with radix!=16 is not supported."); |
|
51 value = Hex.toArray(value); |
|
52 radix=0; |
|
53 } |
|
54 if (value is ByteArray) { |
|
55 var array:ByteArray = value as ByteArray; |
|
56 var length:int = radix || (array.length - array.position); |
|
57 fromArray(array, length, unsigned); |
|
58 } |
|
59 } |
|
60 public function dispose():void { |
|
61 var r:Random = new Random; |
|
62 for (var i:uint=0;i<a.length;i++) { |
|
63 a[i] = r.nextByte(); |
|
64 delete a[i]; |
|
65 } |
|
66 a=null; |
|
67 t=0; |
|
68 s=0; |
|
69 Memory.gc(); |
|
70 } |
|
71 |
|
72 public function toString(radix:Number=16):String { |
|
73 if (s<0) return "-"+negate().toString(radix); |
|
74 var k:int; |
|
75 switch (radix) { |
|
76 case 2: k=1; break; |
|
77 case 4: k=2; break; |
|
78 case 8: k=3; break; |
|
79 case 16: k=4; break; |
|
80 case 32: k=5; break; |
|
81 default: |
|
82 // return toRadix(radix); |
|
83 } |
|
84 var km:int = (1<<k)-1; |
|
85 var d:int = 0; |
|
86 var m:Boolean = false; |
|
87 var r:String = ""; |
|
88 var i:int = t; |
|
89 var p:int = DB-(i*DB)%k; |
|
90 if (i-->0) { |
|
91 if (p<DB && (d=a[i]>>p)>0) { |
|
92 m = true; |
|
93 r = d.toString(36); |
|
94 } |
|
95 while (i >= 0) { |
|
96 if (p<k) { |
|
97 d = (a[i]&((1<<p)-1))<<(k-p); |
|
98 d|= a[--i]>>(p+=DB-k); |
|
99 } else { |
|
100 d = (a[i]>>(p-=k))&km; |
|
101 if (p<=0) { |
|
102 p += DB; |
|
103 --i; |
|
104 } |
|
105 } |
|
106 if (d>0) { |
|
107 m = true; |
|
108 } |
|
109 if (m) { |
|
110 r += d.toString(36); |
|
111 } |
|
112 } |
|
113 } |
|
114 return m?r:"0"; |
|
115 } |
|
116 public function toArray(array:ByteArray):uint { |
|
117 const k:int = 8; |
|
118 const km:int = (1<<8)-1; |
|
119 var d:int = 0; |
|
120 var i:int = t; |
|
121 var p:int = DB-(i*DB)%k; |
|
122 var m:Boolean = false; |
|
123 var c:int = 0; |
|
124 if (i-->0) { |
|
125 if (p<DB && (d=a[i]>>p)>0) { |
|
126 m = true; |
|
127 array.writeByte(d); |
|
128 c++; |
|
129 } |
|
130 while (i >= 0) { |
|
131 if (p<k) { |
|
132 d = (a[i]&((1<<p)-1))<<(k-p); |
|
133 d|= a[--i]>>(p+=DB-k); |
|
134 } else { |
|
135 d = (a[i]>>(p-=k))&km; |
|
136 if (p<=0) { |
|
137 p += DB; |
|
138 --i; |
|
139 } |
|
140 } |
|
141 if (d>0) { |
|
142 m = true; |
|
143 } |
|
144 if (m) { |
|
145 array.writeByte(d); |
|
146 c++; |
|
147 } |
|
148 } |
|
149 } |
|
150 return c; |
|
151 } |
|
152 /** |
|
153 * best-effort attempt to fit into a Number. |
|
154 * precision can be lost if it just can't fit. |
|
155 */ |
|
156 public function valueOf():Number { |
|
157 if (s==-1) { |
|
158 return -negate().valueOf(); |
|
159 } |
|
160 var coef:Number = 1; |
|
161 var value:Number = 0; |
|
162 for (var i:uint=0;i<t;i++) { |
|
163 value += a[i]*coef; |
|
164 coef *= DV; |
|
165 } |
|
166 return value; |
|
167 } |
|
168 /** |
|
169 * -this |
|
170 */ |
|
171 public function negate():BigInteger { |
|
172 var r:BigInteger = nbi(); |
|
173 ZERO.subTo(this, r); |
|
174 return r; |
|
175 } |
|
176 /** |
|
177 * |this| |
|
178 */ |
|
179 public function abs():BigInteger { |
|
180 return (s<0)?negate():this; |
|
181 } |
|
182 /** |
|
183 * return + if this > v, - if this < v, 0 if equal |
|
184 */ |
|
185 public function compareTo(v:BigInteger):int { |
|
186 var r:int = s - v.s; |
|
187 if (r!=0) { |
|
188 return r; |
|
189 } |
|
190 var i:int = t; |
|
191 r = i-v.t; |
|
192 if (r!=0) { |
|
193 return r; |
|
194 } |
|
195 while (--i >=0) { |
|
196 r=a[i]-v.a[i]; |
|
197 if (r != 0) return r; |
|
198 } |
|
199 return 0; |
|
200 } |
|
201 /** |
|
202 * returns bit length of the integer x |
|
203 */ |
|
204 bi_internal function nbits(x:int):int { |
|
205 var r:int = 1; |
|
206 var t:int; |
|
207 if ((t=x>>>16) != 0) { x = t; r += 16; } |
|
208 if ((t=x>>8) != 0) { x = t; r += 8; } |
|
209 if ((t=x>>4) != 0) { x = t; r += 4; } |
|
210 if ((t=x>>2) != 0) { x = t; r += 2; } |
|
211 if ((t=x>>1) != 0) { x = t; r += 1; } |
|
212 return r; |
|
213 } |
|
214 /** |
|
215 * returns the number of bits in this |
|
216 */ |
|
217 public function bitLength():int { |
|
218 if (t<=0) return 0; |
|
219 return DB*(t-1)+nbits(a[t-1]^(s&DM)); |
|
220 } |
|
221 /** |
|
222 * |
|
223 * @param v |
|
224 * @return this % v |
|
225 * |
|
226 */ |
|
227 public function mod(v:BigInteger):BigInteger { |
|
228 var r:BigInteger = nbi(); |
|
229 abs().divRemTo(v,null,r); |
|
230 if (s<0 && r.compareTo(ZERO)>0) { |
|
231 v.subTo(r,r); |
|
232 } |
|
233 return r; |
|
234 } |
|
235 /** |
|
236 * this^e % m, 0 <= e < 2^32 |
|
237 */ |
|
238 public function modPowInt(e:int, m:BigInteger):BigInteger { |
|
239 var z:IReduction; |
|
240 if (e<256 || m.isEven()) { |
|
241 z = new ClassicReduction(m); |
|
242 } else { |
|
243 z = new MontgomeryReduction(m); |
|
244 } |
|
245 return exp(e, z); |
|
246 } |
|
247 |
|
248 /** |
|
249 * copy this to r |
|
250 */ |
|
251 bi_internal function copyTo(r:BigInteger):void { |
|
252 for (var i:int = t-1; i>=0; --i) { |
|
253 r.a[i] = a[i]; |
|
254 } |
|
255 r.t = t; |
|
256 r.s = s; |
|
257 } |
|
258 /** |
|
259 * set from integer value "value", -DV <= value < DV |
|
260 */ |
|
261 bi_internal function fromInt(value:int):void { |
|
262 t = 1; |
|
263 s = (value<0)?-1:0; |
|
264 if (value>0) { |
|
265 a[0] = value; |
|
266 } else if (value<-1) { |
|
267 a[0] = value+DV; |
|
268 } else { |
|
269 t = 0; |
|
270 } |
|
271 } |
|
272 /** |
|
273 * set from ByteArray and length, |
|
274 * starting a current position |
|
275 * If length goes beyond the array, pad with zeroes. |
|
276 */ |
|
277 bi_internal function fromArray(value:ByteArray, length:int, unsigned:Boolean = false):void { |
|
278 var p:int = value.position; |
|
279 var i:int = p+length; |
|
280 var sh:int = 0; |
|
281 const k:int = 8; |
|
282 t = 0; |
|
283 s = 0; |
|
284 while (--i >= p) { |
|
285 var x:int = i<value.length?value[i]:0; |
|
286 if (sh == 0) { |
|
287 a[t++] = x; |
|
288 } else if (sh+k > DB) { |
|
289 a[t-1] |= (x&((1<<(DB-sh))-1))<<sh; |
|
290 a[t++] = x>>(DB-sh); |
|
291 } else { |
|
292 a[t-1] |= x<<sh; |
|
293 } |
|
294 sh += k; |
|
295 if (sh >= DB) sh -= DB; |
|
296 } |
|
297 if (!unsigned && (value[0]&0x80)==0x80) { |
|
298 s = -1; |
|
299 if (sh > 0) { |
|
300 a[t-1] |= ((1<<(DB-sh))-1)<<sh; |
|
301 } |
|
302 } |
|
303 clamp(); |
|
304 value.position = Math.min(p+length,value.length); |
|
305 } |
|
306 /** |
|
307 * clamp off excess high words |
|
308 */ |
|
309 bi_internal function clamp():void { |
|
310 var c:int = s&DM; |
|
311 while (t>0 && a[t-1]==c) { |
|
312 --t; |
|
313 } |
|
314 } |
|
315 /** |
|
316 * r = this << n*DB |
|
317 */ |
|
318 bi_internal function dlShiftTo(n:int, r:BigInteger):void { |
|
319 var i:int; |
|
320 for (i=t-1; i>=0; --i) { |
|
321 r.a[i+n] = a[i]; |
|
322 } |
|
323 for (i=n-1; i>=0; --i) { |
|
324 r.a[i] = 0; |
|
325 } |
|
326 r.t = t+n; |
|
327 r.s = s; |
|
328 } |
|
329 /** |
|
330 * r = this >> n*DB |
|
331 */ |
|
332 bi_internal function drShiftTo(n:int, r:BigInteger):void { |
|
333 var i:int; |
|
334 for (i=n; i<t; ++i) { |
|
335 r.a[i-n] = a[i]; |
|
336 } |
|
337 r.t = Math.max(t-n,0); |
|
338 r.s = s; |
|
339 } |
|
340 /** |
|
341 * r = this << n |
|
342 */ |
|
343 bi_internal function lShiftTo(n:int, r:BigInteger):void { |
|
344 var bs:int = n%DB; |
|
345 var cbs:int = DB-bs; |
|
346 var bm:int = (1<<cbs)-1; |
|
347 var ds:int = n/DB; |
|
348 var c:int = (s<<bs)&DM; |
|
349 var i:int; |
|
350 for (i=t-1; i>=0; --i) { |
|
351 r.a[i+ds+1] = (a[i]>>cbs)|c; |
|
352 c = (a[i]&bm)<<bs; |
|
353 } |
|
354 for (i=ds-1; i>=0; --i) { |
|
355 r.a[i] = 0; |
|
356 } |
|
357 r.a[ds] = c; |
|
358 r.t = t+ds+1; |
|
359 r.s = s; |
|
360 r.clamp(); |
|
361 } |
|
362 /** |
|
363 * r = this >> n |
|
364 */ |
|
365 bi_internal function rShiftTo(n:int, r:BigInteger):void { |
|
366 r.s = s; |
|
367 var ds:int = n/DB; |
|
368 if (ds >= t) { |
|
369 r.t = 0; |
|
370 return; |
|
371 } |
|
372 var bs:int = n%DB; |
|
373 var cbs:int = DB-bs; |
|
374 var bm:int = (1<<bs)-1; |
|
375 r.a[0] = a[ds]>>bs; |
|
376 var i:int; |
|
377 for (i=ds+1; i<t; ++i) { |
|
378 r.a[i-ds-1] |= (a[i]&bm)<<cbs; |
|
379 r.a[i-ds] = a[i]>>bs; |
|
380 } |
|
381 if (bs>0) { |
|
382 r.a[t-ds-1] |= (s&bm)<<cbs; |
|
383 } |
|
384 r.t = t-ds; |
|
385 r.clamp(); |
|
386 } |
|
387 /** |
|
388 * r = this - v |
|
389 */ |
|
390 bi_internal function subTo(v:BigInteger, r:BigInteger):void { |
|
391 var i:int = 0; |
|
392 var c:int = 0; |
|
393 var m:int = Math.min(v.t, t); |
|
394 while (i<m) { |
|
395 c += a[i] - v.a[i]; |
|
396 r.a[i++] = c & DM; |
|
397 c >>= DB; |
|
398 } |
|
399 if (v.t < t) { |
|
400 c -= v.s; |
|
401 while (i< t) { |
|
402 c+= a[i]; |
|
403 r.a[i++] = c&DM; |
|
404 c >>= DB; |
|
405 } |
|
406 c += s; |
|
407 } else { |
|
408 c += s; |
|
409 while (i < v.t) { |
|
410 c -= v.a[i]; |
|
411 r.a[i++] = c&DM; |
|
412 c >>= DB; |
|
413 } |
|
414 c -= v.s; |
|
415 } |
|
416 r.s = (c<0)?-1:0; |
|
417 if (c<-1) { |
|
418 r.a[i++] = DV+c; |
|
419 } else if (c>0) { |
|
420 r.a[i++] = c; |
|
421 } |
|
422 r.t = i; |
|
423 r.clamp(); |
|
424 } |
|
425 /** |
|
426 * am: Compute w_j += (x*this_i), propagates carries, |
|
427 * c is initial carry, returns final carry. |
|
428 * c < 3*dvalue, x < 2*dvalue, this_i < dvalue |
|
429 */ |
|
430 bi_internal function am(i:int,x:int,w:BigInteger,j:int,c:int,n:int):int { |
|
431 var xl:int = x&0x7fff; |
|
432 var xh:int = x>>15; |
|
433 while(--n >= 0) { |
|
434 var l:int = a[i]&0x7fff; |
|
435 var h:int = a[i++]>>15; |
|
436 var m:int = xh*l + h*xl; |
|
437 l = xl*l + ((m&0x7fff)<<15)+w.a[j]+(c&0x3fffffff); |
|
438 c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); |
|
439 w.a[j++] = l&0x3fffffff; |
|
440 } |
|
441 return c; |
|
442 } |
|
443 /** |
|
444 * r = this * v, r != this,a (HAC 14.12) |
|
445 * "this" should be the larger one if appropriate |
|
446 */ |
|
447 bi_internal function multiplyTo(v:BigInteger, r:BigInteger):void { |
|
448 var x:BigInteger = abs(); |
|
449 var y:BigInteger = v.abs(); |
|
450 var i:int = x.t; |
|
451 r.t = i+y.t; |
|
452 while (--i >= 0) { |
|
453 r.a[i] = 0; |
|
454 } |
|
455 for (i=0; i<y.t; ++i) { |
|
456 r.a[i+x.t] = x.am(0, y.a[i], r, i, 0, x.t); |
|
457 } |
|
458 r.s = 0; |
|
459 r.clamp(); |
|
460 if (s!=v.s) { |
|
461 ZERO.subTo(r, r); |
|
462 } |
|
463 } |
|
464 /** |
|
465 * r = this^2, r != this (HAC 14.16) |
|
466 */ |
|
467 bi_internal function squareTo(r:BigInteger):void { |
|
468 var x:BigInteger = abs(); |
|
469 var i:int = r.t = 2*x.t; |
|
470 while (--i>=0) r.a[i] = 0; |
|
471 for (i=0; i<x.t-1; ++i) { |
|
472 var c:int = x.am(i, x.a[i], r, 2*i, 0, 1); |
|
473 if ((r.a[i+x.t] += x.am(i+1, 2*x.a[i], r, 2*i+1, c, x.t-i-1)) >= DV) { |
|
474 r.a[i+x.t] -= DV; |
|
475 r.a[i+x.t+1] = 1; |
|
476 } |
|
477 } |
|
478 if (r.t>0) { |
|
479 r.a[r.t-1] += x.am(i, x.a[i], r, 2*i, 0, 1); |
|
480 } |
|
481 r.s = 0; |
|
482 r.clamp(); |
|
483 } |
|
484 /** |
|
485 * divide this by m, quotient and remainder to q, r (HAC 14.20) |
|
486 * r != q, this != m. q or r may be null. |
|
487 */ |
|
488 bi_internal function divRemTo(m:BigInteger, q:BigInteger = null, r:BigInteger = null):void { |
|
489 var pm:BigInteger = m.abs(); |
|
490 if (pm.t <= 0) return; |
|
491 var pt:BigInteger = abs(); |
|
492 if (pt.t < pm.t) { |
|
493 if (q!=null) q.fromInt(0); |
|
494 if (r!=null) copyTo(r); |
|
495 return; |
|
496 } |
|
497 if (r==null) r = nbi(); |
|
498 var y:BigInteger = nbi(); |
|
499 var ts:int = s; |
|
500 var ms:int = m.s; |
|
501 var nsh:int = DB-nbits(pm.a[pm.t-1]); // normalize modulus |
|
502 if (nsh>0) { |
|
503 pm.lShiftTo(nsh, y); |
|
504 pt.lShiftTo(nsh, r); |
|
505 } else { |
|
506 pm.copyTo(y); |
|
507 pt.copyTo(r); |
|
508 } |
|
509 var ys:int = y.t; |
|
510 var y0:int = y.a[ys-1]; |
|
511 if (y0==0) return; |
|
512 var yt:Number = y0*(1<<F1)+((ys>1)?y.a[ys-2]>>F2:0); |
|
513 var d1:Number = FV/yt; |
|
514 var d2:Number = (1<<F1)/yt; |
|
515 var e:Number = 1<<F2; |
|
516 var i:int = r.t; |
|
517 var j:int = i-ys; |
|
518 var t:BigInteger = (q==null)?nbi():q; |
|
519 y.dlShiftTo(j,t); |
|
520 if (r.compareTo(t)>=0) { |
|
521 r.a[r.t++] = 1; |
|
522 r.subTo(t,r); |
|
523 } |
|
524 ONE.dlShiftTo(ys,t); |
|
525 t.subTo(y,y); // "negative" y so we can replace sub with am later. |
|
526 while(y.t<ys) y.(y.t++, 0); |
|
527 while(--j >= 0) { |
|
528 // Estimate quotient digit |
|
529 var qd:int = (r.a[--i]==y0)?DM:Number(r.a[i])*d1+(Number(r.a[i-1])+e)*d2; |
|
530 if ((r.a[i]+= y.am(0, qd, r, j, 0, ys))<qd) { // Try it out |
|
531 y.dlShiftTo(j, t); |
|
532 r.subTo(t,r); |
|
533 while (r.a[i]<--qd) { |
|
534 r.subTo(t,r); |
|
535 } |
|
536 } |
|
537 } |
|
538 if (q!=null) { |
|
539 r.drShiftTo(ys,q); |
|
540 if (ts!=ms) { |
|
541 ZERO.subTo(q,q); |
|
542 } |
|
543 } |
|
544 r.t = ys; |
|
545 r.clamp(); |
|
546 if (nsh>0) { |
|
547 r.rShiftTo(nsh, r); // Denormalize remainder |
|
548 } |
|
549 if (ts<0) { |
|
550 ZERO.subTo(r,r); |
|
551 } |
|
552 } |
|
553 /** |
|
554 * return "-1/this % 2^DB"; useful for Mont. reduction |
|
555 * justification: |
|
556 * xy == 1 (mod n) |
|
557 * xy = 1+km |
|
558 * xy(2-xy) = (1+km)(1-km) |
|
559 * x[y(2-xy)] = 1-k^2.m^2 |
|
560 * x[y(2-xy)] == 1 (mod m^2) |
|
561 * if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 |
|
562 * should reduce x and y(2-xy) by m^2 at each step to keep size bounded |
|
563 * [XXX unit test the living shit out of this.] |
|
564 */ |
|
565 bi_internal function invDigit():int { |
|
566 if (t<1) return 0; |
|
567 var x:int = a[0]; |
|
568 if ((x&1)==0) return 0; |
|
569 var y:int = x&3; // y == 1/x mod 2^2 |
|
570 y = (y*(2-(x&0xf )*y)) &0xf; // y == 1/x mod 2^4 |
|
571 y = (y*(2-(x&0xff)*y)) &0xff; // y == 1/x mod 2^8 |
|
572 y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 |
|
573 // last step - calculate inverse mod DV directly; |
|
574 // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints |
|
575 // XXX 48 bit ints? Whaaaa? is there an implicit float conversion in here? |
|
576 y = (y*(2-x*y%DV))%DV; // y == 1/x mod 2^dbits |
|
577 // we really want the negative inverse, and -DV < y < DV |
|
578 return (y>0)?DV-y:-y; |
|
579 } |
|
580 /** |
|
581 * true iff this is even |
|
582 */ |
|
583 bi_internal function isEven():Boolean { |
|
584 return ((t>0)?(a[0]&1):s) == 0; |
|
585 } |
|
586 /** |
|
587 * this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) |
|
588 */ |
|
589 bi_internal function exp(e:int, z:IReduction):BigInteger { |
|
590 if (e > 0xffffffff || e < 1) return ONE; |
|
591 var r:BigInteger = nbi(); |
|
592 var r2:BigInteger = nbi(); |
|
593 var g:BigInteger = z.convert(this); |
|
594 var i:int = nbits(e)-1; |
|
595 g.copyTo(r); |
|
596 while(--i>=0) { |
|
597 z.sqrTo(r, r2); |
|
598 if ((e&(1<<i))>0) { |
|
599 z.mulTo(r2,g,r); |
|
600 } else { |
|
601 var t:BigInteger = r; |
|
602 r = r2; |
|
603 r2 = t; |
|
604 } |
|
605 |
|
606 } |
|
607 return z.revert(r); |
|
608 } |
|
609 bi_internal function intAt(str:String, index:int):int { |
|
610 return parseInt(str.charAt(index), 36); |
|
611 } |
|
612 |
|
613 |
|
614 protected function nbi():* { |
|
615 return new BigInteger; |
|
616 } |
|
617 /** |
|
618 * return bigint initialized to value |
|
619 */ |
|
620 public static function nbv(value:int):BigInteger { |
|
621 var bn:BigInteger = new BigInteger; |
|
622 bn.fromInt(value); |
|
623 return bn; |
|
624 } |
|
625 |
|
626 |
|
627 // Functions above are sufficient for RSA encryption. |
|
628 // The stuff below is useful for decryption and key generation |
|
629 |
|
630 public static const lowprimes:Array = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509]; |
|
631 public static const lplim:int = (1<<26)/lowprimes[lowprimes.length-1]; |
|
632 |
|
633 |
|
634 public function clone():BigInteger { |
|
635 var r:BigInteger = new BigInteger; |
|
636 this.copyTo(r); |
|
637 return r; |
|
638 } |
|
639 |
|
640 /** |
|
641 * |
|
642 * @return value as integer |
|
643 * |
|
644 */ |
|
645 public function intValue():int { |
|
646 if (s<0) { |
|
647 if (t==1) { |
|
648 return a[0]-DV; |
|
649 } else if (t==0) { |
|
650 return -1; |
|
651 } |
|
652 } else if (t==1) { |
|
653 return a[0]; |
|
654 } else if (t==0) { |
|
655 return 0; |
|
656 } |
|
657 // assumes 16 < DB < 32 |
|
658 return ((a[1]&((1<<(32-DB))-1))<<DB)|a[0]; |
|
659 } |
|
660 |
|
661 /** |
|
662 * |
|
663 * @return value as byte |
|
664 * |
|
665 */ |
|
666 public function byteValue():int { |
|
667 return (t==0)?s:(a[0]<<24)>>24; |
|
668 } |
|
669 |
|
670 /** |
|
671 * |
|
672 * @return value as short (assumes DB>=16) |
|
673 * |
|
674 */ |
|
675 public function shortValue():int { |
|
676 return (t==0)?s:(a[0]<<16)>>16; |
|
677 } |
|
678 |
|
679 /** |
|
680 * |
|
681 * @param r |
|
682 * @return x s.t. r^x < DV |
|
683 * |
|
684 */ |
|
685 protected function chunkSize(r:Number):int { |
|
686 return Math.floor(Math.LN2*DB/Math.log(r)); |
|
687 } |
|
688 |
|
689 /** |
|
690 * |
|
691 * @return 0 if this ==0, 1 if this >0 |
|
692 * |
|
693 */ |
|
694 public function sigNum():int { |
|
695 if (s<0) { |
|
696 return -1; |
|
697 } else if (t<=0 || (t==1 && a[0]<=0)) { |
|
698 return 0; |
|
699 } else{ |
|
700 return 1; |
|
701 } |
|
702 } |
|
703 |
|
704 /** |
|
705 * |
|
706 * @param b: radix to use |
|
707 * @return a string representing the integer converted to the radix. |
|
708 * |
|
709 */ |
|
710 protected function toRadix(b:uint=10):String { |
|
711 if (sigNum()==0 || b<2 || b>32) return "0"; |
|
712 var cs:int = chunkSize(b); |
|
713 var a:Number = Math.pow(b, cs); |
|
714 var d:BigInteger = nbv(a); |
|
715 var y:BigInteger = nbi(); |
|
716 var z:BigInteger = nbi(); |
|
717 var r:String = ""; |
|
718 divRemTo(d, y, z); |
|
719 while (y.sigNum()>0) { |
|
720 r = (a+z.intValue()).toString(b).substr(1) + r; |
|
721 y.divRemTo(d,y,z); |
|
722 } |
|
723 return z.intValue().toString(b) + r; |
|
724 } |
|
725 |
|
726 /** |
|
727 * |
|
728 * @param s a string to convert from using radix. |
|
729 * @param b a radix |
|
730 * |
|
731 */ |
|
732 protected function fromRadix(s:String, b:int = 10):void { |
|
733 fromInt(0); |
|
734 var cs:int = chunkSize(b); |
|
735 var d:Number = Math.pow(b, cs); |
|
736 var mi:Boolean = false; |
|
737 var j:int = 0; |
|
738 var w:int = 0; |
|
739 for (var i:int=0;i<s.length;++i) { |
|
740 var x:int = intAt(s, i); |
|
741 if (x<0) { |
|
742 if (s.charAt(i) == "-" && sigNum() == 0) { |
|
743 mi = true; |
|
744 } |
|
745 continue; |
|
746 } |
|
747 w = b*w+x; |
|
748 if (++j >= cs) { |
|
749 dMultiply(d); |
|
750 dAddOffset(w,0); |
|
751 j=0; |
|
752 w=0; |
|
753 } |
|
754 } |
|
755 if (j>0) { |
|
756 dMultiply(Math.pow(b,j)); |
|
757 dAddOffset(w,0); |
|
758 } |
|
759 if (mi) { |
|
760 BigInteger.ZERO.subTo(this, this); |
|
761 } |
|
762 } |
|
763 |
|
764 // XXX function fromNumber not written yet. |
|
765 |
|
766 /** |
|
767 * |
|
768 * @return a byte array. |
|
769 * |
|
770 */ |
|
771 public function toByteArray():ByteArray { |
|
772 var i:int = t; |
|
773 var r:ByteArray = new ByteArray; |
|
774 r[0] = s; |
|
775 var p:int = DB-(i*DB)%8; |
|
776 var d:int; |
|
777 var k:int=0; |
|
778 if (i-->0) { |
|
779 if (p<DB && (d=a[i]>>p)!=(s&DM)>>p) { |
|
780 r[k++] = d|(s<<(DB-p)); |
|
781 } |
|
782 while (i>=0) { |
|
783 if(p<8) { |
|
784 d = (a[i]&((1<<p)-1))<<(8-p); |
|
785 d|= a[--i]>>(p+=DB-8); |
|
786 } else { |
|
787 d = (a[i]>>(p-=8))&0xff; |
|
788 if (p<=0) { |
|
789 p += DB; |
|
790 --i; |
|
791 } |
|
792 } |
|
793 if ((d&0x80)!=0) d|=-256; |
|
794 if (k==0 && (s&0x80)!=(d&0x80)) ++k; |
|
795 if (k>0 || d!=s) r[k++] = d; |
|
796 } |
|
797 } |
|
798 return r; |
|
799 } |
|
800 |
|
801 public function equals(a:BigInteger):Boolean { |
|
802 return compareTo(a)==0; |
|
803 } |
|
804 public function min(a:BigInteger):BigInteger { |
|
805 return (compareTo(a)<0)?this:a; |
|
806 } |
|
807 public function max(a:BigInteger):BigInteger { |
|
808 return (compareTo(a)>0)?this:a; |
|
809 } |
|
810 |
|
811 /** |
|
812 * |
|
813 * @param a a BigInteger to perform the operation with |
|
814 * @param op a Function implementing the operation |
|
815 * @param r a BigInteger to store the result of the operation |
|
816 * |
|
817 */ |
|
818 protected function bitwiseTo(a:BigInteger, op:Function, r:BigInteger):void { |
|
819 var i:int; |
|
820 var f:int; |
|
821 var m:int = Math.min(a.t, t); |
|
822 for (i=0; i<m; ++i) { |
|
823 r.a[i] = op(this.a[i],a.a[i]); |
|
824 } |
|
825 if (a.t<t) { |
|
826 f = a.s&DM; |
|
827 for (i=m;i<t;++i) { |
|
828 r.a[i] = op(this.a[i],f); |
|
829 } |
|
830 r.t = t; |
|
831 } else { |
|
832 f = s&DM; |
|
833 for (i=m;i<a.t;++i) { |
|
834 r.a[i] = op(f,a.a[i]); |
|
835 } |
|
836 r.t = a.t; |
|
837 } |
|
838 r.s = op(s, a.s); |
|
839 r.clamp(); |
|
840 } |
|
841 |
|
842 private function op_and(x:int, y:int):int {return x&y;} |
|
843 public function and(a:BigInteger):BigInteger { |
|
844 var r:BigInteger = new BigInteger; |
|
845 bitwiseTo(a, op_and, r); |
|
846 return r; |
|
847 } |
|
848 |
|
849 private function op_or(x:int, y:int):int {return x|y;} |
|
850 public function or(a:BigInteger):BigInteger { |
|
851 var r:BigInteger = new BigInteger; |
|
852 bitwiseTo(a, op_or, r); |
|
853 return r; |
|
854 } |
|
855 |
|
856 private function op_xor(x:int, y:int):int {return x^y;} |
|
857 public function xor(a:BigInteger):BigInteger { |
|
858 var r:BigInteger = new BigInteger; |
|
859 bitwiseTo(a, op_xor, r); |
|
860 return r; |
|
861 } |
|
862 |
|
863 private function op_andnot(x:int, y:int):int { return x&~y;} |
|
864 public function andNot(a:BigInteger):BigInteger { |
|
865 var r:BigInteger = new BigInteger; |
|
866 bitwiseTo(a, op_andnot, r); |
|
867 return r; |
|
868 } |
|
869 |
|
870 public function not():BigInteger { |
|
871 var r:BigInteger = new BigInteger; |
|
872 for (var i:int=0;i<t;++i) { |
|
873 r[i] = DM&~a[i]; |
|
874 } |
|
875 r.t = t; |
|
876 r.s = ~s; |
|
877 return r; |
|
878 } |
|
879 |
|
880 public function shiftLeft(n:int):BigInteger { |
|
881 var r:BigInteger = new BigInteger; |
|
882 if (n<0) { |
|
883 rShiftTo(-n, r); |
|
884 } else { |
|
885 lShiftTo(n, r); |
|
886 } |
|
887 return r; |
|
888 } |
|
889 public function shiftRight(n:int):BigInteger { |
|
890 var r:BigInteger = new BigInteger; |
|
891 if (n<0) { |
|
892 lShiftTo(-n, r); |
|
893 } else { |
|
894 rShiftTo(n, r); |
|
895 } |
|
896 return r; |
|
897 } |
|
898 |
|
899 /** |
|
900 * |
|
901 * @param x |
|
902 * @return index of lowet 1-bit in x, x < 2^31 |
|
903 * |
|
904 */ |
|
905 private function lbit(x:int):int { |
|
906 if (x==0) return -1; |
|
907 var r:int = 0; |
|
908 if ((x&0xffff)==0) { x>>= 16; r += 16; } |
|
909 if ((x&0xff) == 0) { x>>= 8; r += 8; } |
|
910 if ((x&0xf) == 0) { x>>= 4; r += 4; } |
|
911 if ((x&0x3) == 0) { x>>= 2; r += 2; } |
|
912 if ((x&0x1) == 0) ++r; |
|
913 return r; |
|
914 } |
|
915 |
|
916 /** |
|
917 * |
|
918 * @return index of lowest 1-bit (or -1 if none) |
|
919 * |
|
920 */ |
|
921 public function getLowestSetBit():int { |
|
922 for (var i:int=0;i<t;++i) { |
|
923 if (a[i]!=0) return i*DB+lbit(a[i]); |
|
924 } |
|
925 if (s<0) return t*DB; |
|
926 return -1; |
|
927 } |
|
928 |
|
929 /** |
|
930 * |
|
931 * @param x |
|
932 * @return number of 1 bits in x |
|
933 * |
|
934 */ |
|
935 private function cbit(x:int):int { |
|
936 var r:uint =0; |
|
937 while (x!=0) { x &= x-1; ++r } |
|
938 return r; |
|
939 } |
|
940 |
|
941 /** |
|
942 * |
|
943 * @return number of set bits |
|
944 * |
|
945 */ |
|
946 public function bitCount():int { |
|
947 var r:int=0; |
|
948 var x:int = s&DM; |
|
949 for (var i:int=0;i<t;++i) { |
|
950 r += cbit(a[i]^x); |
|
951 } |
|
952 return r; |
|
953 } |
|
954 |
|
955 /** |
|
956 * |
|
957 * @param n |
|
958 * @return true iff nth bit is set |
|
959 * |
|
960 */ |
|
961 public function testBit(n:int):Boolean { |
|
962 var j:int = Math.floor(n/DB); |
|
963 if (j>=t) { |
|
964 return s!=0; |
|
965 } |
|
966 return ((a[j]&(1<<(n%DB)))!=0); |
|
967 } |
|
968 |
|
969 /** |
|
970 * |
|
971 * @param n |
|
972 * @param op |
|
973 * @return this op (1<<n) |
|
974 * |
|
975 */ |
|
976 protected function changeBit(n:int,op:Function):BigInteger { |
|
977 var r:BigInteger = BigInteger.ONE.shiftLeft(n); |
|
978 bitwiseTo(r, op, r); |
|
979 return r; |
|
980 } |
|
981 |
|
982 /** |
|
983 * |
|
984 * @param n |
|
985 * @return this | (1<<n) |
|
986 * |
|
987 */ |
|
988 public function setBit(n:int):BigInteger { return changeBit(n, op_or); } |
|
989 |
|
990 /** |
|
991 * |
|
992 * @param n |
|
993 * @return this & ~(1<<n) |
|
994 * |
|
995 */ |
|
996 public function clearBit(n:int):BigInteger { return changeBit(n, op_andnot); } |
|
997 |
|
998 /** |
|
999 * |
|
1000 * @param n |
|
1001 * @return this ^ (1<<n) |
|
1002 * |
|
1003 */ |
|
1004 public function flipBit(n:int):BigInteger { return changeBit(n, op_xor); } |
|
1005 |
|
1006 /** |
|
1007 * |
|
1008 * @param a |
|
1009 * @param r = this + a |
|
1010 * |
|
1011 */ |
|
1012 protected function addTo(a:BigInteger, r:BigInteger):void { |
|
1013 var i:int = 0; |
|
1014 var c:int = 0; |
|
1015 var m:int = Math.min(a.t, t); |
|
1016 while (i<m) { |
|
1017 c += this.a[i] + a.a[i]; |
|
1018 r.a[i++] = c&DM; |
|
1019 c>>=DB; |
|
1020 } |
|
1021 if (a.t < t) { |
|
1022 c += a.s; |
|
1023 while (i<t) { |
|
1024 c += this.a[i]; |
|
1025 r.a[i++] = c&DM; |
|
1026 c >>= DB; |
|
1027 } |
|
1028 c += s; |
|
1029 } else { |
|
1030 c += s; |
|
1031 while (i<a.t) { |
|
1032 c += a.a[i]; |
|
1033 r.a[i++] = c&DM; |
|
1034 c >>= DB; |
|
1035 } |
|
1036 c += a.s; |
|
1037 } |
|
1038 r.s = (c<0)?-1:0; |
|
1039 if (c>0) { |
|
1040 r.a[i++] = c; |
|
1041 } else if (c<-1) { |
|
1042 r.a[i++] = DV+c; |
|
1043 } |
|
1044 r.t = i; |
|
1045 r.clamp(); |
|
1046 } |
|
1047 |
|
1048 /** |
|
1049 * |
|
1050 * @param a |
|
1051 * @return this + a |
|
1052 * |
|
1053 */ |
|
1054 public function add(a:BigInteger):BigInteger { |
|
1055 var r:BigInteger = new BigInteger; |
|
1056 addTo(a,r); |
|
1057 return r; |
|
1058 } |
|
1059 |
|
1060 /** |
|
1061 * |
|
1062 * @param a |
|
1063 * @return this - a |
|
1064 * |
|
1065 */ |
|
1066 public function subtract(a:BigInteger):BigInteger { |
|
1067 var r:BigInteger = new BigInteger; |
|
1068 subTo(a,r); |
|
1069 return r; |
|
1070 } |
|
1071 |
|
1072 /** |
|
1073 * |
|
1074 * @param a |
|
1075 * @return this * a |
|
1076 * |
|
1077 */ |
|
1078 public function multiply(a:BigInteger):BigInteger { |
|
1079 var r:BigInteger = new BigInteger; |
|
1080 multiplyTo(a,r); |
|
1081 return r; |
|
1082 } |
|
1083 |
|
1084 /** |
|
1085 * |
|
1086 * @param a |
|
1087 * @return this / a |
|
1088 * |
|
1089 */ |
|
1090 public function divide(a:BigInteger):BigInteger { |
|
1091 var r:BigInteger = new BigInteger; |
|
1092 divRemTo(a, r, null); |
|
1093 return r; |
|
1094 } |
|
1095 |
|
1096 public function remainder(a:BigInteger):BigInteger { |
|
1097 var r:BigInteger = new BigInteger; |
|
1098 divRemTo(a, null, r); |
|
1099 return r; |
|
1100 } |
|
1101 |
|
1102 /** |
|
1103 * |
|
1104 * @param a |
|
1105 * @return [this/a, this%a] |
|
1106 * |
|
1107 */ |
|
1108 public function divideAndRemainder(a:BigInteger):Array { |
|
1109 var q:BigInteger = new BigInteger; |
|
1110 var r:BigInteger = new BigInteger; |
|
1111 divRemTo(a, q, r); |
|
1112 return [q,r]; |
|
1113 } |
|
1114 |
|
1115 /** |
|
1116 * |
|
1117 * this *= n, this >=0, 1 < n < DV |
|
1118 * |
|
1119 * @param n |
|
1120 * |
|
1121 */ |
|
1122 bi_internal function dMultiply(n:int):void { |
|
1123 a[t] = am(0, n-1, this, 0, 0, t); |
|
1124 ++t; |
|
1125 clamp(); |
|
1126 } |
|
1127 |
|
1128 /** |
|
1129 * |
|
1130 * this += n << w words, this >= 0 |
|
1131 * |
|
1132 * @param n |
|
1133 * @param w |
|
1134 * |
|
1135 */ |
|
1136 bi_internal function dAddOffset(n:int, w:int):void { |
|
1137 while (t<=w) { |
|
1138 a[t++] = 0; |
|
1139 } |
|
1140 a[w] += n; |
|
1141 while (a[w] >= DV) { |
|
1142 a[w] -= DV; |
|
1143 if (++w >= t) { |
|
1144 a[t++] = 0; |
|
1145 } |
|
1146 ++a[w]; |
|
1147 } |
|
1148 } |
|
1149 |
|
1150 /** |
|
1151 * |
|
1152 * @param e |
|
1153 * @return this^e |
|
1154 * |
|
1155 */ |
|
1156 public function pow(e:int):BigInteger { |
|
1157 return exp(e, new NullReduction); |
|
1158 } |
|
1159 |
|
1160 /** |
|
1161 * |
|
1162 * @param a |
|
1163 * @param n |
|
1164 * @param r = lower n words of "this * a", a.t <= n |
|
1165 * |
|
1166 */ |
|
1167 bi_internal function multiplyLowerTo(a:BigInteger, n:int, r:BigInteger):void { |
|
1168 var i:int = Math.min(t+a.t, n); |
|
1169 r.s = 0; // assumes a, this >= 0 |
|
1170 r.t = i; |
|
1171 while (i>0) { |
|
1172 r.a[--i]=0; |
|
1173 } |
|
1174 var j:int; |
|
1175 for (j=r.t-t;i<j;++i) { |
|
1176 r.a[i+t] = am(0, a.a[i], r, i, 0, t); |
|
1177 } |
|
1178 for (j=Math.min(a.t,n);i<j;++i) { |
|
1179 am(0, a.a[i], r, i, 0, n-i); |
|
1180 } |
|
1181 r.clamp(); |
|
1182 } |
|
1183 |
|
1184 /** |
|
1185 * |
|
1186 * @param a |
|
1187 * @param n |
|
1188 * @param r = "this * a" without lower n words, n > 0 |
|
1189 * |
|
1190 */ |
|
1191 bi_internal function multiplyUpperTo(a:BigInteger, n:int, r:BigInteger):void { |
|
1192 --n; |
|
1193 var i:int = r.t = t+a.t-n; |
|
1194 r.s = 0; // assumes a,this >= 0 |
|
1195 while (--i>=0) { |
|
1196 r.a[i] = 0; |
|
1197 } |
|
1198 for (i=Math.max(n-t,0);i<a.t;++i) { |
|
1199 r.a[t+i-n] = am(n-i, a.a[i], r, 0, 0, t+i-n); |
|
1200 } |
|
1201 r.clamp(); |
|
1202 r.drShiftTo(1,r); |
|
1203 } |
|
1204 |
|
1205 /** |
|
1206 * |
|
1207 * @param e |
|
1208 * @param m |
|
1209 * @return this^e % m (HAC 14.85) |
|
1210 * |
|
1211 */ |
|
1212 public function modPow(e:BigInteger, m:BigInteger):BigInteger { |
|
1213 var i:int = e.bitLength(); |
|
1214 var k:int; |
|
1215 var r:BigInteger = nbv(1); |
|
1216 var z:IReduction; |
|
1217 |
|
1218 if (i<=0) { |
|
1219 return r; |
|
1220 } else if (i<18) { |
|
1221 k=1; |
|
1222 } else if (i<48) { |
|
1223 k=3; |
|
1224 } else if (i<144) { |
|
1225 k=4; |
|
1226 } else if (i<768) { |
|
1227 k=5; |
|
1228 } else { |
|
1229 k=6; |
|
1230 } |
|
1231 if (i<8) { |
|
1232 z = new ClassicReduction(m); |
|
1233 } else if (m.isEven()) { |
|
1234 z = new BarrettReduction(m); |
|
1235 } else { |
|
1236 z = new MontgomeryReduction(m); |
|
1237 } |
|
1238 // precomputation |
|
1239 var g:Array = []; |
|
1240 var n:int = 3; |
|
1241 var k1:int = k-1; |
|
1242 var km:int = (1<<k)-1; |
|
1243 g[1] = z.convert(this); |
|
1244 if (k > 1) { |
|
1245 var g2:BigInteger = new BigInteger; |
|
1246 z.sqrTo(g[1], g2); |
|
1247 while (n<=km) { |
|
1248 g[n] = new BigInteger; |
|
1249 z.mulTo(g2, g[n-2], g[n]); |
|
1250 n += 2; |
|
1251 } |
|
1252 } |
|
1253 |
|
1254 var j:int = e.t-1; |
|
1255 var w:int; |
|
1256 var is1:Boolean = true; |
|
1257 var r2:BigInteger = new BigInteger; |
|
1258 var t:BigInteger; |
|
1259 i = nbits(e.a[j])-1; |
|
1260 while (j>=0) { |
|
1261 if (i>=k1) { |
|
1262 w = (e.a[j]>>(i-k1))&km; |
|
1263 } else { |
|
1264 w = (e.a[j]&((1<<(i+1))-1))<<(k1-i); |
|
1265 if (j>0) { |
|
1266 w |= e.a[j-1]>>(DB+i-k1); |
|
1267 } |
|
1268 } |
|
1269 n = k; |
|
1270 while ((w&1)==0) { |
|
1271 w >>= 1; |
|
1272 --n; |
|
1273 } |
|
1274 if ((i -= n) <0) { |
|
1275 i += DB; |
|
1276 --j; |
|
1277 } |
|
1278 if (is1) { // ret == 1, don't bother squaring or multiplying it |
|
1279 g[w].copyTo(r); |
|
1280 is1 = false; |
|
1281 } else { |
|
1282 while (n>1) { |
|
1283 z.sqrTo(r, r2); |
|
1284 z.sqrTo(r2, r); |
|
1285 n -= 2; |
|
1286 } |
|
1287 if (n>0) { |
|
1288 z.sqrTo(r, r2); |
|
1289 } else { |
|
1290 t = r; |
|
1291 r = r2; |
|
1292 r2 = t; |
|
1293 } |
|
1294 z.mulTo(r2, g[w], r); |
|
1295 } |
|
1296 while (j>=0 && (e.a[j]&(1<<i)) == 0) { |
|
1297 z.sqrTo(r, r2); |
|
1298 t = r; |
|
1299 r = r2; |
|
1300 r2 = t; |
|
1301 if (--i<0) { |
|
1302 i = DB-1; |
|
1303 --j; |
|
1304 } |
|
1305 |
|
1306 } |
|
1307 } |
|
1308 return z.revert(r); |
|
1309 } |
|
1310 |
|
1311 /** |
|
1312 * |
|
1313 * @param a |
|
1314 * @return gcd(this, a) (HAC 14.54) |
|
1315 * |
|
1316 */ |
|
1317 public function gcd(a:BigInteger):BigInteger { |
|
1318 var x:BigInteger = (s<0)?negate():clone(); |
|
1319 var y:BigInteger = (a.s<0)?a.negate():a.clone(); |
|
1320 if (x.compareTo(y)<0) { |
|
1321 var t:BigInteger=x; |
|
1322 x=y; |
|
1323 y=t; |
|
1324 } |
|
1325 var i:int = x.getLowestSetBit(); |
|
1326 var g:int = y.getLowestSetBit(); |
|
1327 if (g<0) return x; |
|
1328 if (i<g) g= i; |
|
1329 if (g>0) { |
|
1330 x.rShiftTo(g, x); |
|
1331 y.rShiftTo(g, y); |
|
1332 } |
|
1333 while (x.sigNum()>0) { |
|
1334 if ((i = x.getLowestSetBit()) >0) { |
|
1335 x.rShiftTo(i, x); |
|
1336 } |
|
1337 if ((i = y.getLowestSetBit()) >0) { |
|
1338 y.rShiftTo(i, y); |
|
1339 } |
|
1340 if (x.compareTo(y) >= 0) { |
|
1341 x.subTo(y, x); |
|
1342 x.rShiftTo(1, x); |
|
1343 } else { |
|
1344 y.subTo(x, y); |
|
1345 y.rShiftTo(1, y); |
|
1346 } |
|
1347 } |
|
1348 if (g>0) { |
|
1349 y.lShiftTo(g, y); |
|
1350 } |
|
1351 return y; |
|
1352 } |
|
1353 |
|
1354 /** |
|
1355 * |
|
1356 * @param n |
|
1357 * @return this % n, n < 2^DB |
|
1358 * |
|
1359 */ |
|
1360 protected function modInt(n:int):int { |
|
1361 if (n<=0) return 0; |
|
1362 var d:int = DV%n; |
|
1363 var r:int = (s<0)?n-1:0; |
|
1364 if (t>0) { |
|
1365 if (d==0) { |
|
1366 r = a[0]%n; |
|
1367 } else { |
|
1368 for (var i:int=t-1;i>=0;--i) { |
|
1369 r = (d*r+a[i])%n; |
|
1370 } |
|
1371 } |
|
1372 } |
|
1373 return r; |
|
1374 } |
|
1375 |
|
1376 /** |
|
1377 * |
|
1378 * @param m |
|
1379 * @return 1/this %m (HAC 14.61) |
|
1380 * |
|
1381 */ |
|
1382 public function modInverse(m:BigInteger):BigInteger { |
|
1383 var ac:Boolean = m.isEven(); |
|
1384 if ((isEven()&&ac) || m.sigNum()==0) { |
|
1385 return BigInteger.ZERO; |
|
1386 } |
|
1387 var u:BigInteger = m.clone(); |
|
1388 var v:BigInteger = clone(); |
|
1389 var a:BigInteger = nbv(1); |
|
1390 var b:BigInteger = nbv(0); |
|
1391 var c:BigInteger = nbv(0); |
|
1392 var d:BigInteger = nbv(1); |
|
1393 while (u.sigNum()!=0) { |
|
1394 while (u.isEven()) { |
|
1395 u.rShiftTo(1,u); |
|
1396 if (ac) { |
|
1397 if (!a.isEven() || !b.isEven()) { |
|
1398 a.addTo(this,a); |
|
1399 b.subTo(m,b); |
|
1400 } |
|
1401 a.rShiftTo(1,a); |
|
1402 } else if (!b.isEven()) { |
|
1403 b.subTo(m,b); |
|
1404 } |
|
1405 b.rShiftTo(1,b); |
|
1406 } |
|
1407 while (v.isEven()) { |
|
1408 v.rShiftTo(1,v); |
|
1409 if (ac) { |
|
1410 if (!c.isEven() || !d.isEven()) { |
|
1411 c.addTo(this,c); |
|
1412 d.subTo(m,d); |
|
1413 } |
|
1414 c.rShiftTo(1,c); |
|
1415 } else if (!d.isEven()) { |
|
1416 d.subTo(m,d); |
|
1417 } |
|
1418 d.rShiftTo(1,d); |
|
1419 } |
|
1420 if (u.compareTo(v)>=0) { |
|
1421 u.subTo(v,u); |
|
1422 if (ac) { |
|
1423 a.subTo(c,a); |
|
1424 } |
|
1425 b.subTo(d,b); |
|
1426 } else { |
|
1427 v.subTo(u,v); |
|
1428 if (ac) { |
|
1429 c.subTo(a,c); |
|
1430 } |
|
1431 d.subTo(b,d); |
|
1432 } |
|
1433 } |
|
1434 if (v.compareTo(BigInteger.ONE) != 0) { |
|
1435 return BigInteger.ZERO; |
|
1436 } |
|
1437 if (d.compareTo(m) >= 0) { |
|
1438 return d.subtract(m); |
|
1439 } |
|
1440 if (d.sigNum()<0) { |
|
1441 d.addTo(m,d); |
|
1442 } else { |
|
1443 return d; |
|
1444 } |
|
1445 if (d.sigNum()<0) { |
|
1446 return d.add(m); |
|
1447 } else { |
|
1448 return d; |
|
1449 } |
|
1450 } |
|
1451 |
|
1452 /** |
|
1453 * |
|
1454 * @param t |
|
1455 * @return primality with certainty >= 1-.5^t |
|
1456 * |
|
1457 */ |
|
1458 public function isProbablePrime(t:int):Boolean { |
|
1459 var i:int; |
|
1460 var x:BigInteger = abs(); |
|
1461 if (x.t == 1 && x.a[0]<=lowprimes[lowprimes.length-1]) { |
|
1462 for (i=0;i<lowprimes.length;++i) { |
|
1463 if (x[0]==lowprimes[i]) return true; |
|
1464 } |
|
1465 return false; |
|
1466 } |
|
1467 if (x.isEven()) return false; |
|
1468 i = 1; |
|
1469 while (i<lowprimes.length) { |
|
1470 var m:int = lowprimes[i]; |
|
1471 var j:int = i+1; |
|
1472 while (j<lowprimes.length && m<lplim) { |
|
1473 m *= lowprimes[j++]; |
|
1474 } |
|
1475 m = x.modInt(m); |
|
1476 while (i<j) { |
|
1477 if (m%lowprimes[i++]==0) { |
|
1478 return false; |
|
1479 } |
|
1480 } |
|
1481 } |
|
1482 return x.millerRabin(t); |
|
1483 } |
|
1484 |
|
1485 /** |
|
1486 * |
|
1487 * @param t |
|
1488 * @return true if probably prime (HAC 4.24, Miller-Rabin) |
|
1489 * |
|
1490 */ |
|
1491 protected function millerRabin(t:int):Boolean { |
|
1492 var n1:BigInteger = subtract(BigInteger.ONE); |
|
1493 var k:int = n1.getLowestSetBit(); |
|
1494 if (k<=0) { |
|
1495 return false; |
|
1496 } |
|
1497 var r:BigInteger = n1.shiftRight(k); |
|
1498 t = (t+1)>>1; |
|
1499 if (t>lowprimes.length) { |
|
1500 t = lowprimes.length; |
|
1501 } |
|
1502 var a:BigInteger = new BigInteger; |
|
1503 for (var i:int=0;i<t;++i) { |
|
1504 a.fromInt(lowprimes[i]); |
|
1505 var y:BigInteger = a.modPow(r, this); |
|
1506 if (y.compareTo(BigInteger.ONE)!=0 && y.compareTo(n1)!=0) { |
|
1507 var j:int = 1; |
|
1508 while (j++<k && y.compareTo(n1)!=0) { |
|
1509 y = y.modPowInt(2, this); |
|
1510 if (y.compareTo(BigInteger.ONE)==0) { |
|
1511 return false; |
|
1512 } |
|
1513 } |
|
1514 if (y.compareTo(n1)!=0) { |
|
1515 return false; |
|
1516 } |
|
1517 } |
|
1518 } |
|
1519 return true; |
|
1520 } |
|
1521 |
|
1522 /** |
|
1523 * Tweak our BigInteger until it looks prime enough |
|
1524 * |
|
1525 * @param bits |
|
1526 * @param t |
|
1527 * |
|
1528 */ |
|
1529 public function primify(bits:int, t:int):void { |
|
1530 if (!testBit(bits-1)) { // force MSB set |
|
1531 bitwiseTo(BigInteger.ONE.shiftLeft(bits-1), op_or, this); |
|
1532 } |
|
1533 if (isEven()) { |
|
1534 dAddOffset(1,0); // force odd |
|
1535 } |
|
1536 while (!isProbablePrime(t)) { |
|
1537 dAddOffset(2,0); |
|
1538 while(bitLength()>bits) subTo(BigInteger.ONE.shiftLeft(bits-1),this); |
|
1539 } |
|
1540 } |
|
1541 |
|
1542 } |
|
1543 } |
|