diff -r efd9c589177a -r c0b4a8b5a012 toolkit/javascript/d3/src/geom/quadtree.js --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolkit/javascript/d3/src/geom/quadtree.js Thu Apr 10 14:20:23 2014 +0200 @@ -0,0 +1,129 @@ +// Constructs a new quadtree for the specified array of points. A quadtree is a +// two-dimensional recursive spatial subdivision. This implementation uses +// square partitions, dividing each square into four equally-sized squares. Each +// point exists in a unique node; if multiple points are in the same position, +// some points may be stored on internal nodes rather than leaf nodes. Quadtrees +// can be used to accelerate various spatial operations, such as the Barnes-Hut +// approximation for computing n-body forces, or collision detection. +d3.geom.quadtree = function(points, x1, y1, x2, y2) { + var p, + i = -1, + n = points.length; + + // Type conversion for deprecated API. + if (n && isNaN(points[0].x)) points = points.map(d3_geom_quadtreePoint); + + // Allow bounds to be specified explicitly. + if (arguments.length < 5) { + if (arguments.length === 3) { + y2 = x2 = y1; + y1 = x1; + } else { + x1 = y1 = Infinity; + x2 = y2 = -Infinity; + + // Compute bounds. + while (++i < n) { + p = points[i]; + if (p.x < x1) x1 = p.x; + if (p.y < y1) y1 = p.y; + if (p.x > x2) x2 = p.x; + if (p.y > y2) y2 = p.y; + } + + // Squarify the bounds. + var dx = x2 - x1, + dy = y2 - y1; + if (dx > dy) y2 = y1 + dx; + else x2 = x1 + dy; + } + } + + // Recursively inserts the specified point p at the node n or one of its + // descendants. The bounds are defined by [x1, x2] and [y1, y2]. + function insert(n, p, x1, y1, x2, y2) { + if (isNaN(p.x) || isNaN(p.y)) return; // ignore invalid points + if (n.leaf) { + var v = n.point; + if (v) { + // If the point at this leaf node is at the same position as the new + // point we are adding, we leave the point associated with the + // internal node while adding the new point to a child node. This + // avoids infinite recursion. + if ((Math.abs(v.x - p.x) + Math.abs(v.y - p.y)) < .01) { + insertChild(n, p, x1, y1, x2, y2); + } else { + n.point = null; + insertChild(n, v, x1, y1, x2, y2); + insertChild(n, p, x1, y1, x2, y2); + } + } else { + n.point = p; + } + } else { + insertChild(n, p, x1, y1, x2, y2); + } + } + + // Recursively inserts the specified point p into a descendant of node n. The + // bounds are defined by [x1, x2] and [y1, y2]. + function insertChild(n, p, x1, y1, x2, y2) { + // Compute the split point, and the quadrant in which to insert p. + var sx = (x1 + x2) * .5, + sy = (y1 + y2) * .5, + right = p.x >= sx, + bottom = p.y >= sy, + i = (bottom << 1) + right; + + // Recursively insert into the child node. + n.leaf = false; + n = n.nodes[i] || (n.nodes[i] = d3_geom_quadtreeNode()); + + // Update the bounds as we recurse. + if (right) x1 = sx; else x2 = sx; + if (bottom) y1 = sy; else y2 = sy; + insert(n, p, x1, y1, x2, y2); + } + + // Create the root node. + var root = d3_geom_quadtreeNode(); + + root.add = function(p) { + insert(root, p, x1, y1, x2, y2); + }; + + root.visit = function(f) { + d3_geom_quadtreeVisit(f, root, x1, y1, x2, y2); + }; + + // Insert all points. + points.forEach(root.add); + return root; +}; + +function d3_geom_quadtreeNode() { + return { + leaf: true, + nodes: [], + point: null + }; +} + +function d3_geom_quadtreeVisit(f, node, x1, y1, x2, y2) { + if (!f(node, x1, y1, x2, y2)) { + var sx = (x1 + x2) * .5, + sy = (y1 + y2) * .5, + children = node.nodes; + if (children[0]) d3_geom_quadtreeVisit(f, children[0], x1, y1, sx, sy); + if (children[1]) d3_geom_quadtreeVisit(f, children[1], sx, y1, x2, sy); + if (children[2]) d3_geom_quadtreeVisit(f, children[2], x1, sy, sx, y2); + if (children[3]) d3_geom_quadtreeVisit(f, children[3], sx, sy, x2, y2); + } +} + +function d3_geom_quadtreePoint(p) { + return { + x: p[0], + y: p[1] + }; +}