// Constructs a new quadtree for the specified array of points. A quadtree is a
// two-dimensional recursive spatial subdivision. This implementation uses
// square partitions, dividing each square into four equally-sized squares. Each
// point exists in a unique node; if multiple points are in the same position,
// some points may be stored on internal nodes rather than leaf nodes. Quadtrees
// can be used to accelerate various spatial operations, such as the Barnes-Hut
// approximation for computing n-body forces, or collision detection.
d3.geom.quadtree = function(points, x1, y1, x2, y2) {
var p,
i = -1,
n = points.length;
// Type conversion for deprecated API.
if (n && isNaN(points[0].x)) points = points.map(d3_geom_quadtreePoint);
// Allow bounds to be specified explicitly.
if (arguments.length < 5) {
if (arguments.length === 3) {
y2 = x2 = y1;
y1 = x1;
} else {
x1 = y1 = Infinity;
x2 = y2 = -Infinity;
// Compute bounds.
while (++i < n) {
p = points[i];
if (p.x < x1) x1 = p.x;
if (p.y < y1) y1 = p.y;
if (p.x > x2) x2 = p.x;
if (p.y > y2) y2 = p.y;
}
// Squarify the bounds.
var dx = x2 - x1,
dy = y2 - y1;
if (dx > dy) y2 = y1 + dx;
else x2 = x1 + dy;
}
}
// Recursively inserts the specified point p at the node n or one of its
// descendants. The bounds are defined by [x1, x2] and [y1, y2].
function insert(n, p, x1, y1, x2, y2) {
if (isNaN(p.x) || isNaN(p.y)) return; // ignore invalid points
if (n.leaf) {
var v = n.point;
if (v) {
// If the point at this leaf node is at the same position as the new
// point we are adding, we leave the point associated with the
// internal node while adding the new point to a child node. This
// avoids infinite recursion.
if ((Math.abs(v.x - p.x) + Math.abs(v.y - p.y)) < .01) {
insertChild(n, p, x1, y1, x2, y2);
} else {
n.point = null;
insertChild(n, v, x1, y1, x2, y2);
insertChild(n, p, x1, y1, x2, y2);
}
} else {
n.point = p;
}
} else {
insertChild(n, p, x1, y1, x2, y2);
}
}
// Recursively inserts the specified point p into a descendant of node n. The
// bounds are defined by [x1, x2] and [y1, y2].
function insertChild(n, p, x1, y1, x2, y2) {
// Compute the split point, and the quadrant in which to insert p.
var sx = (x1 + x2) * .5,
sy = (y1 + y2) * .5,
right = p.x >= sx,
bottom = p.y >= sy,
i = (bottom << 1) + right;
// Recursively insert into the child node.
n.leaf = false;
n = n.nodes[i] || (n.nodes[i] = d3_geom_quadtreeNode());
// Update the bounds as we recurse.
if (right) x1 = sx; else x2 = sx;
if (bottom) y1 = sy; else y2 = sy;
insert(n, p, x1, y1, x2, y2);
}
// Create the root node.
var root = d3_geom_quadtreeNode();
root.add = function(p) {
insert(root, p, x1, y1, x2, y2);
};
root.visit = function(f) {
d3_geom_quadtreeVisit(f, root, x1, y1, x2, y2);
};
// Insert all points.
points.forEach(root.add);
return root;
};
function d3_geom_quadtreeNode() {
return {
leaf: true,
nodes: [],
point: null
};
}
function d3_geom_quadtreeVisit(f, node, x1, y1, x2, y2) {
if (!f(node, x1, y1, x2, y2)) {
var sx = (x1 + x2) * .5,
sy = (y1 + y2) * .5,
children = node.nodes;
if (children[0]) d3_geom_quadtreeVisit(f, children[0], x1, y1, sx, sy);
if (children[1]) d3_geom_quadtreeVisit(f, children[1], sx, y1, x2, sy);
if (children[2]) d3_geom_quadtreeVisit(f, children[2], x1, sy, sx, y2);
if (children[3]) d3_geom_quadtreeVisit(f, children[3], sx, sy, x2, y2);
}
}
function d3_geom_quadtreePoint(p) {
return {
x: p[0],
y: p[1]
};
}