--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/toolkit/javascript/d3/src/layout/tree.js Thu Apr 10 14:20:23 2014 +0200
@@ -0,0 +1,237 @@
+// Node-link tree diagram using the Reingold-Tilford "tidy" algorithm
+d3.layout.tree = function() {
+ var hierarchy = d3.layout.hierarchy().sort(null).value(null),
+ separation = d3_layout_treeSeparation,
+ size = [1, 1]; // width, height
+
+ function tree(d, i) {
+ var nodes = hierarchy.call(this, d, i),
+ root = nodes[0];
+
+ function firstWalk(node, previousSibling) {
+ var children = node.children,
+ layout = node._tree;
+ if (children && (n = children.length)) {
+ var n,
+ firstChild = children[0],
+ previousChild,
+ ancestor = firstChild,
+ child,
+ i = -1;
+ while (++i < n) {
+ child = children[i];
+ firstWalk(child, previousChild);
+ ancestor = apportion(child, previousChild, ancestor);
+ previousChild = child;
+ }
+ d3_layout_treeShift(node);
+ var midpoint = .5 * (firstChild._tree.prelim + child._tree.prelim);
+ if (previousSibling) {
+ layout.prelim = previousSibling._tree.prelim + separation(node, previousSibling);
+ layout.mod = layout.prelim - midpoint;
+ } else {
+ layout.prelim = midpoint;
+ }
+ } else {
+ if (previousSibling) {
+ layout.prelim = previousSibling._tree.prelim + separation(node, previousSibling);
+ }
+ }
+ }
+
+ function secondWalk(node, x) {
+ node.x = node._tree.prelim + x;
+ var children = node.children;
+ if (children && (n = children.length)) {
+ var i = -1,
+ n;
+ x += node._tree.mod;
+ while (++i < n) {
+ secondWalk(children[i], x);
+ }
+ }
+ }
+
+ function apportion(node, previousSibling, ancestor) {
+ if (previousSibling) {
+ var vip = node,
+ vop = node,
+ vim = previousSibling,
+ vom = node.parent.children[0],
+ sip = vip._tree.mod,
+ sop = vop._tree.mod,
+ sim = vim._tree.mod,
+ som = vom._tree.mod,
+ shift;
+ while (vim = d3_layout_treeRight(vim), vip = d3_layout_treeLeft(vip), vim && vip) {
+ vom = d3_layout_treeLeft(vom);
+ vop = d3_layout_treeRight(vop);
+ vop._tree.ancestor = node;
+ shift = vim._tree.prelim + sim - vip._tree.prelim - sip + separation(vim, vip);
+ if (shift > 0) {
+ d3_layout_treeMove(d3_layout_treeAncestor(vim, node, ancestor), node, shift);
+ sip += shift;
+ sop += shift;
+ }
+ sim += vim._tree.mod;
+ sip += vip._tree.mod;
+ som += vom._tree.mod;
+ sop += vop._tree.mod;
+ }
+ if (vim && !d3_layout_treeRight(vop)) {
+ vop._tree.thread = vim;
+ vop._tree.mod += sim - sop;
+ }
+ if (vip && !d3_layout_treeLeft(vom)) {
+ vom._tree.thread = vip;
+ vom._tree.mod += sip - som;
+ ancestor = node;
+ }
+ }
+ return ancestor;
+ }
+
+ // Initialize temporary layout variables.
+ d3_layout_treeVisitAfter(root, function(node, previousSibling) {
+ node._tree = {
+ ancestor: node,
+ prelim: 0,
+ mod: 0,
+ change: 0,
+ shift: 0,
+ number: previousSibling ? previousSibling._tree.number + 1 : 0
+ };
+ });
+
+ // Compute the layout using Buchheim et al.'s algorithm.
+ firstWalk(root);
+ secondWalk(root, -root._tree.prelim);
+
+ // Compute the left-most, right-most, and depth-most nodes for extents.
+ var left = d3_layout_treeSearch(root, d3_layout_treeLeftmost),
+ right = d3_layout_treeSearch(root, d3_layout_treeRightmost),
+ deep = d3_layout_treeSearch(root, d3_layout_treeDeepest),
+ x0 = left.x - separation(left, right) / 2,
+ x1 = right.x + separation(right, left) / 2,
+ y1 = deep.depth || 1;
+
+ // Clear temporary layout variables; transform x and y.
+ d3_layout_treeVisitAfter(root, function(node) {
+ node.x = (node.x - x0) / (x1 - x0) * size[0];
+ node.y = node.depth / y1 * size[1];
+ delete node._tree;
+ });
+
+ return nodes;
+ }
+
+ tree.separation = function(x) {
+ if (!arguments.length) return separation;
+ separation = x;
+ return tree;
+ };
+
+ tree.size = function(x) {
+ if (!arguments.length) return size;
+ size = x;
+ return tree;
+ };
+
+ return d3_layout_hierarchyRebind(tree, hierarchy);
+};
+
+function d3_layout_treeSeparation(a, b) {
+ return a.parent == b.parent ? 1 : 2;
+}
+
+// function d3_layout_treeSeparationRadial(a, b) {
+// return (a.parent == b.parent ? 1 : 2) / a.depth;
+// }
+
+function d3_layout_treeLeft(node) {
+ var children = node.children;
+ return children && children.length ? children[0] : node._tree.thread;
+}
+
+function d3_layout_treeRight(node) {
+ var children = node.children,
+ n;
+ return children && (n = children.length) ? children[n - 1] : node._tree.thread;
+}
+
+function d3_layout_treeSearch(node, compare) {
+ var children = node.children;
+ if (children && (n = children.length)) {
+ var child,
+ n,
+ i = -1;
+ while (++i < n) {
+ if (compare(child = d3_layout_treeSearch(children[i], compare), node) > 0) {
+ node = child;
+ }
+ }
+ }
+ return node;
+}
+
+function d3_layout_treeRightmost(a, b) {
+ return a.x - b.x;
+}
+
+function d3_layout_treeLeftmost(a, b) {
+ return b.x - a.x;
+}
+
+function d3_layout_treeDeepest(a, b) {
+ return a.depth - b.depth;
+}
+
+function d3_layout_treeVisitAfter(node, callback) {
+ function visit(node, previousSibling) {
+ var children = node.children;
+ if (children && (n = children.length)) {
+ var child,
+ previousChild = null,
+ i = -1,
+ n;
+ while (++i < n) {
+ child = children[i];
+ visit(child, previousChild);
+ previousChild = child;
+ }
+ }
+ callback(node, previousSibling);
+ }
+ visit(node, null);
+}
+
+function d3_layout_treeShift(node) {
+ var shift = 0,
+ change = 0,
+ children = node.children,
+ i = children.length,
+ child;
+ while (--i >= 0) {
+ child = children[i]._tree;
+ child.prelim += shift;
+ child.mod += shift;
+ shift += child.shift + (change += child.change);
+ }
+}
+
+function d3_layout_treeMove(ancestor, node, shift) {
+ ancestor = ancestor._tree;
+ node = node._tree;
+ var change = shift / (node.number - ancestor.number);
+ ancestor.change += change;
+ node.change -= change;
+ node.shift += shift;
+ node.prelim += shift;
+ node.mod += shift;
+}
+
+function d3_layout_treeAncestor(vim, node, ancestor) {
+ return vim._tree.ancestor.parent == node.parent
+ ? vim._tree.ancestor
+ : ancestor;
+}